On the maximum of the first resonance frequency for inhomogeneous elastic bodies

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper considers a non-classical optimization problem associated with the development of the production of new functionally graded materials. It is proposed to optimize the first natural frequency of oscillations by choosing the law of change in elastic moduli, and not the shape, as is done in most works devoted to optimization. This formulation of the problem becomes practically justified with the development of 3D printing and the production of FGM ceramics with specified properties. As an example, the problems of oscillations of a FGM rod and a FGM beam with spring boundary conditions at one of the ends are considered.

全文:

受限制的访问

作者简介

A. Vatulyan

Southern Federal University

编辑信件的主要联系方式.
Email: aovatulyan@sfedu.ru
俄罗斯联邦, Rostov-on-Don

V. Yurov

Southern Mathematical Institute, Vladikavkaz Scientific Center of Russian Academy of Sciences

Email: vitja.jurov@yandex.ru
俄罗斯联邦, Vladikavkaz

参考

  1. Banichuk N.V. Shape Optimization for Elastic Bodies. M.: Nauka, 1980. 255 p. [in Russian]
  2. Grinev V.B., Filippov A.P. On optimal shapes of bars in stability problems // Stroit. Mekh. Rasch. Sooruzh. 1975. № 2. P. 21–27. [in Russian]
  3. Grinev V.B., Filippov A.P. On optimal bars in stability problems under distributed loadings // Stroit. Mekh. Rasch. Sooruzh. 1975. № 6. P. 23–27. [in Russian]
  4. Bratus A.S., Kartvelishvili V.I. Approximate analytical solutions to optimization problems of stability and vibration frequency of elastic thin-walled structures // Izv. AN SSSR, Mekh. Tv. Tela. 1981. V. 6. P. 119–139. [in Russian]
  5. Krein M.G. On some maximum and minimum problems for characteristic numbers and on Lyapunov stability regions // Prikl. Mat. Mekh. 1951. V. 15. № 3. P. 323–348. [in Russian]
  6. Niordson F.I. On the optimal design of a vibrating beam // Quart. Appl. Math. 1965. V. 23, № l. P. 47–53.
  7. Olkhoff N. Optimal design of structures. M.: Mir, 1981. 277 p. [in Russian]
  8. Rammerstorfer F.G. On the optimal distribution of the young’s modulus of a vibrating, prestressed beam // Journal of Sound and Vibration. 1974. V. 37(1). P. 140–145.
  9. Gupta V.K., Murthy P.N. Optimal design of uniform non-homogeneous vibrating beams // Journal of Sound and Vibration, 1978. V. 59(4). P. 521–531.
  10. Alshabatat N.T. Optimal design of functionally graded material columns for buckling problems // Journal of Mechanical Engineering and Sciences. 2018. V. 12. № 3. P. 3914–3926. https://doi.org/10.15282/jmes.12.3.2018.11.0342
  11. Adali S. Optimal shape and non-homogeneity of a non-uniformly compressed column // Int. J. Solids Structures. 1979. V. 15. P. 935–949.
  12. Takewaki I.: Optimal frequency design of tower structures via an approximation concept. // Comput. Struct. 1996. V. 58(3). P. 445–452.
  13. Sarkisyan V.S., Gukasyan G.M., Grigoryan A.A. Optimal Design of a Circular Plate with Rectilinear Anisotropy Journal of Mathematical Sciences. 2001. V. 104(5). P. 1569–1574. https://doi.org/10.1023/A:1011300122949
  14. Bushuev A.Yu. Application of the perturbation method and sensitivity functions in the optimization problem of systems with distributed parameters // Engineering Journal: Science and Innovation. 2015. Iss. 6. [in Russian]
  15. Amir E., Amir O. Free form shape optimization of three dimensional beams using cross section analysis // International Journal of Solids and Structures, 2023. V. 277–278. 112331. https://doi.org/10.1016/j.ijsolstr.2023.112331
  16. Vatulyan A.O. Coefficient Inverse Problems of Mechanics. M.: Fizmatlit, 2019. 272 p. [in Russian]

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Eigenvalue k: according to (4.10) – solid line, according to (4.15) – dotted line

下载 (45KB)
3. Fig. 2. Eigenvalue k: according to (4.12) – solid line, according to (4.16) – dotted line

下载 (44KB)

版权所有 © Russian Academy of Sciences, 2024