Marine invertebrate lectins: isolation, properties and biological activity

Cover Page

Cite item

Full Text

Abstract

Interest in marine organisms is due to the high content of biologically active substances in them, which are objects of fundamental and applied biomedical research and are effective in the development of therapeutic and prophylactic agents against a wide range of diseases. The laboratory of chemistry of non-infectious immunity of PIBOC FEB RAS conducts research on the screening, isolation, structure determination, study of physicochemical properties and biological activity of lectins from marine invertebrates. Lectins of different carbohydrate specificity have been isolated from bivalve mollusks, the physiological role of which is to participate in the innate immunity of mollusks. These proteins have different biological activity, including antibacterial and antiproliferative.

Full Text

Restricted Access

About the authors

Irina V. Chikalovets

Elyakov Pacific Institute of Bioorganic Chemistry of FEB RAS

Author for correspondence.
Email: ivchik6@mail.ru
ORCID iD: 0000-0001-5102-9311

Candidate of Sciences in Chemistry, Senior Researcher

Russian Federation, Vladivostok

Tatyana O. Mizgina

Elyakov Pacific Institute of Bioorganic Chemistry of FEB RAS

Email: tanya.tasha@mail.ru
ORCID iD: 0000-0002-9587-897X

Candidate of Sciences in Chemistry, Junior Researcher

Russian Federation, Vladivostok

Alina P. Filshtein

Elyakov Pacific Institute of Bioorganic Chemistry of FEB RAS

Email: alishichka@mail.ru
ORCID iD: 0009-0000-6293-6582

Candidate of Sciences in Chemistry, Junior Researcher

Russian Federation, Vladivostok

Alexandra S. Kuzmich

Elyakov Pacific Institute of Bioorganic Chemistry of FEB RAS

Email: assavina@mail.ru
ORCID iD: 0000-0001-5358-5880

Researcher

Russian Federation, Vladivostok

Oleg V. Chernikov

Elyakov Pacific Institute of Bioorganic Chemistry of FEB RAS

Email: chernikov@piboc.dvo.ru
ORCID iD: 0000-0002-3076-3637

Candidate of Sciences in Biology, Deputy Director

Russian Federation, Vladivostok

References

  1. Freitas A.C., Rodrigues D., Rocha-Santos T.A.P., Gomes A.M.P., Duarte A.C. Marine biotechnology advances towards applications in new functional foods. Biotechnol. Adv. 2012;30(6):1506–1515.
  2. Ogawa T., Watanabe M., Naganuma T., Muramoto K. Diversified carbohydrate-binding lectins from marine resources. J. Amino Acids. 2011;2011:838914.
  3. Bonnardel F., Mariethoz J., Salentin S., Robin X., Schroeder M., Perez S., et al. UniLectin3D, a database of carbohydrate binding proteins with curated information on 3D structures and interacting ligands. Nucleic. Acids Res. 2019;47(D1):D1236–D1244.
  4. Lutaenko K.A., Volvenko I.E. Malyi atlas dvustvorchatykh mollyuskov zaliva Petra Velikogo (Yaponskoe more) = [Small atlas of bivalve mollusks of the Peter the Great Gulf (Sea of Japan)]. 2nd ed. Vladivostok: Dal’nevostochnyi Federal’nyi Universitet; 2022. 138 s. (In Russ.).
  5. Ahmmed M.K., Bhowmik S., Giteru S.G., Zilani M.N.H., Adadi P., Islam S.S., et al. An Update of lectins from marine organisms: characterization, extraction methodology, and potential biofunctional applications. Mar. Drugs. 2022;20(7). 430.
  6. Cheung R.C., Wong J.H., Pan W., Chan Y.S., Yin C., Dan X., et al. Marine lectins and their medicinal applications. Appl. Microbiol. Biotechnol. 2015;99(9):3755–3773.
  7. Chettri D., Boro M., Sarkar L., Verma A.K. Lectins: Biological significance to biotechnological application. Carbohydr. Res. 2021;506. 108367.
  8. Nascimento Kel.S., Cunha A.I., Nascimento Kyr.S., Cavada B.S., Azevedo A.M., Aires-Barros M.R. An overview of lectins purification strategies. J. Mol. Recognit. 2012;25(11):527–541.
  9. Belogortseva N.I., Molchanova V.I., Kurika A.V., Skobun A.S., Glazkova V.E. Isolation and characterization of new GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus. Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol. 1998;119(1):45–50.
  10. Chikalovets I.V., Kondrashina A.S., Chernikov O.V., Molchanova V.I., Luk’yanov P.A. Isolation and general characteristics of lectin from the mussel Mytilus trossulus. Chem. Nat. Compd. 2013;48(6):1058–1061.
  11. Chikalovets I., Filshtein A., Molchanova V., Mizgina T., Lukyanov P., Nedashkovskaya O., et al. Activity dependence of a novel lectin family on structure and carbohydrate-binding properties. Molecules. 2019;25(1). 150.
  12. Mizgina T.O., Chikalovets I.V., Bulanova T.A., Molchanova V.I., Filshtein A.P., Ziganshin R.H., et al. New L-rhamnose-binding lectin from the bivalve Glycymeris yessoensis: purification, partial structural characterization and antibacterial activity. Mar. Drugs. 2023;22(1). 27.
  13. Mizgina T.O., Chikalovets I.V., Molchanova V.I., Kokoulin M.S., Filshtein A.P., Sidorin E.V., et al. Lectin of the bivalve Glycymeris yessoensis as a pattern recognition receptor. Russ. J. Bioorganic. Chem. 2020;46(6):1187–1197.
  14. Mizgina T.O., Chikalovets I.V., Molchanova V.I., Ziganshin R.H., Chernikov O.V. Identification and characterization of a novel lectin from the clam Glycymeris yessoensis and its functional characterization under microbial stimulation and environmental stress. Mar. Drugs. 2021;19(9). 474.
  15. Wang W., Song X., Wang L., Song L. Pathogen-derived carbohydrate recognition in molluscs immune defense. Int. J. Mol. Sci. 2018;19(3). 721.
  16. Song L., Wang L., Qiu L., Zhang H. Bivalve immunity. Adv. Exp. Med. Biol. 2010;708:44–65.
  17. Kovalchuk S.N., Chikalovets I.V., Chernikov O.V., Molchanova V.I., Li W., Rasskazov V.A., et al. CDNA cloning and structural characterization of a lectin from the mussel Crenomytilus grayanus with a unique amino acid sequence and antibacterial activity. Fish Shellfish Immunol. 2013;35(4):1320–1324.
  18. Chikalovets I.V., Kovalchuk S.N., Litovchenko A.P., Molchanova V.I., Pivkin M.V., Chernikov O.V. A new Gal/GalNAc-specific lectin from the mussel Mytilus trossulus: structure, tissue specificity, antimicrobial and antifungal activity. Fish Shellfish Immunol. 2016;50:27–33.
  19. Nabi-Afjadi M., Heydari M., Zalpoor H., Arman I., Sadoughi A., Sahami P., et al. Lectins and lectibodies: potential promising antiviral agents. Cell. Mol. Biol. Lett. 2022;27(1). 37.
  20. Liu Z., Luo Y., Zhou T.-T., Zhang W.-Z. Could plant lectins become promising anti-tumour drugs for causing autophagic cell death? Cell. Prolif. 2013;46(5):509–515.
  21. Hashim O.H., Jayapalan J.J., Lee C.S. Lectins: an effective tool for screening of potential cancer biomarkers. Peer J. 2017;5(9). e3784.
  22. Carrizo M.E., Capaldi S., Perduca M., Irazoqui F.J., Nores G.A., Monaco H.L. The antineoplastic lectin of the common edible mushroom (Agaricus bisporus) has two binding sites, each specific for a different configuration at a single epimeric hydroxyl. J. Biol. Chem. 2005;280(11):10614–10623.
  23. Lorca T., Labbe J.C., Devault A., Fesquet D., Capony J.P., Cavadore J.C., et al. Dephosphorylation of cdc2 on threonine 161 is required for cdc2 kinase inactivation and normal anaphase. EMBO J. 1992;11(7):2381–2390.
  24. Norbury C., Blow J., Nurse P. Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates. EMBO J. 1991;10(11):3321–3329.
  25. Jessus C., Ozon R. Function and regulation of cdc25 protein phosphate through mitosis and meiosis. Prog. Cell. Cycle. Res. 1995;1:215–28.
  26. Blasina A., Van de Weyer I., Laus M.C., Luyten W.H.M.L., Parker A.E., McGowan C.H. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr. Biol. 1999;9(1):1–10.
  27. Zeng Y., Forbes K.C., Wu Z., Moreno S., Piwnica-Worms H., Enoch T. Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature. 1998;395(6701):507–510.
  28. Young A.R.J., Narita M., Ferreira M., Kirschner K., Sadaie M., Darot J.F.J., et al. Autophagy mediates the mitotic senescence transition. Genes Dev. 2009;23(7):798–803.
  29. Chernikov O., Kuzmich A., Chikalovets I., Molchanova V., Hua K.-F. Lectin CGL from the sea mussel Crenomytilus grayanus induces Burkitt’s lymphoma cells death via interaction with surface glycan. Int. J. Biol. Macromol. 2017;104:508–514.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Antiproliferative effect of lectins against cell lines of different types of human intestinal and breast tumours as determined by MTS test. Data are presented as mean value ± standard deviation (n = 3)

Download (105KB)
3. Fig. 2. Effect of lectins on tumour cell adhesion. Cells were incubated in the presence (100 µg/ml) or absence (control) of lectins. The results were detected using a light microscope

Download (182KB)
4. Fig. 3. Effect of CGL (A) and MTL (B) on the cell cycle of HT-29 cells

Download (110KB)
5. Fig. 4. Effect of lectins on AFC production in HT-29 and MCF-7 tumour cells. Data are presented as mean value ± standard deviation (n = 3)

Download (91KB)
6. Fig. 5. Effect of lectins on AFC production in Raji tumour cells

Download (229KB)
7. Fig. 6. Effect of lectins on the proliferation of HT-29, MCF-7 and Raji tumour cells in the presence of NAC

Download (297KB)
8. Fig. 7. Effect of CGL lectin on autophagy in Raji cells of Burkitt's lymphoma cells

Download (59KB)
9. Fig. 8. Effect of CGL (A, B) and MTL (B) on tumour cells of HT-29 and MCF-7 lines determined by soft agar method

Download (166KB)
10. Fig. 9. Effect of CGL on migration of HT-29, Raji and MCF-7 tumour cell lines

Download (219KB)
11. Fig. 10. Effect of CGL on migration of HT-29 tumour cell line by the scratch overgrowth method

Download (352KB)

Copyright (c) 2025 Russian Academy of Sciences