Studies of secondary metabolites from marine sponges in the Laboratory of the Chemistry of Marine Natural Compounds of PIBOC FEB RAS in 2019–2023

Abstract

Sea sponges are among the richest sources of biologically active compounds. Among them, terpenoids, alkaloids, polyketides, peptides, steroids, amino acids and other classes of compounds were found. They exhibit a wide range of biological activities such as cytotoxic, antitumor, antibacterial, antifungal, antiviral, anti-inflammatory, antioxidant, enzyme inhibitory and antimalarial. This review covers the structures and biological activities of secondary metabolites isolated from marine sponges in the Laboratory of the Chemistry of Marine Natural Compounds of the Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences and published in 2019–2023.

Full Text

Restricted Access

About the authors

Sergey N. Fedorov

Elyakov Pacific Institute of Bioorganic Chemistry of FEB RAS

Author for correspondence.
Email: fedorov@piboc.dvo.ru
ORCID iD: 0000-0001-7318-8866

Doctor of Sciences in Chemistry, Leading Researcher

Russian Federation, Vladivostok

Tatiana N. Makarieva

Elyakov Pacific Institute of Bioorganic Chemistry of FEB RAS

Email: makarieva@piboc.dvo.ru
ORCID iD: 0000-0002-2446-8543

Doctor of Sciences in Chemistry, Major Researcher

Russian Federation, Vladivostok

Alla G. Guziy

Elyakov Pacific Institute of Bioorganic Chemistry of FEB RAS

Email: gagry@rambler.ru

Candidate of Sciences in Chemistry, Senior Researcher

Russian Federation, Vladivostok

Larisa K. Shubina

Elyakov Pacific Institute of Bioorganic Chemistry of FEB RAS

Email: shubina@piboc.dvo.ru

Candidate of Sciences in Chemistry, Senior Researcher

Russian Federation, Vladivostok

Ksenia M. Tabakmacher

Elyakov Pacific Institute of Bioorganic Chemistry of FEB RAS

Email: tabakmakher_km@piboc.dvo.ru

Candidate of Sciences in Chemistry, Researcher

Russian Federation, Vladivostok

Ekaterina K. Kudryashova

Elyakov Pacific Institute of Bioorganic Chemistry of FEB RAS

Email: catrinog.81@mail.ru
ORCID iD: 0009-0006-8911-6377

Junior Researcher

Russian Federation, Vladivostok

Elena A. Santalova

Elyakov Pacific Institute of Bioorganic Chemistry of FEB RAS

Email: santalova@piboc.dvo.ru
ORCID iD: 0000-0001-9503-4833

Candidate of Sciences in Chemistry, Senior Researcher

Russian Federation, Vladivostok

Sophia A. Kolesnikova

Elyakov Pacific Institute of Bioorganic Chemistry of FEB RAS

Email: sovin81@inbox.ru
ORCID iD: 0000-0002-4405-8496

Candidate of Sciences in Chemistry, Senior Researcher

Russian Federation, Vladivostok

Anastasia B. Kozhushnaya

Elyakov Pacific Institute of Bioorganic Chemistry of FEB RAS

Email: kozhushnaia.ab@mail.ru
ORCID iD: 0000-0001-7974-8158

Junior Researcher

Russian Federation, Vladivostok

Natalia V. Ivanchina

Elyakov Pacific Institute of Bioorganic Chemistry of FEB RAS

Email: ivanchina@piboc.dvo.ru
ORCID iD: 0000-0001-9075-8584

Candidate of Sciences in Chemistry, Head of Laboratory

Russian Federation, Vladivostok

References

  1. Van Soest R.W.M., Boury-Esnault N., Vacelet J., Dohrmann M., Erpenbeck D., De Voogd N.J., Santodomingo N., Vanhoorne B., Kelly M., Hooper J.N.A. Global diversity of sponges (Porifera). PLoS ONE. 2012;(7):e35105.
  2. Paul V.J., Puglisi M.P., Ritson-Williams R. Marine chemical ecology. Nat. Prod. Rep. 2006;(23):153–180.
  3. Varijakzhan D., Loh J.Y., Yap W.S., Yusoff K., Seboussi R., Lim S.H.E., Lai K.S., Chong C.M. Bioactive compounds from marine sponges: Fundamentals and applications. Mar. Drugs. 2021;(19):246.
  4. Li P., Lu H., Zhang Y., Zhang X., Liu L., Wang M., Liu L. The natural products discovered in marine sponge-associated microorganisms: structures, activities, and mining strategy. Front. Mar. Sci. 2023;(10):1191858.
  5. Carroll A.R., Copp B.R., Davis R.A., Keyzers R.A., Prinsep M.R. Marine natural products. Nat. Prod. Rep. 2024;(41):162–207.
  6. Hu Y., Chen J., Hu G., Yu J., Zhu X., Lin Y., Chen S., Yuan J. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar. Drugs. 2015;(13):202–221.
  7. Makar’eva T.N., Guzii A.G., Shubina L.K., Lyakhova E.G., Kolesnikova S.A., Tabakmakher K.M., Kudryashova E.K., Stonik V.A. Poisk i strukturnoe izuchenie novykh bioaktivnykh vtorichnykh metabolitov iz morskikh bespozvonochnykh. Vestnik of the FEB RAS. 2019;(5):48–56. (In Russ.).
  8. Makarieva T.N., Ogurtsova E.K., Denisenko V.A., Dmitrenok P.S., Tabakmakher K.M., Guzii A.G., Pislyagin E.A., Es′kov A.A., Kozhemyako V.B., Aminin D.L., Wang Y.-M., Stonik V.A. UrupocidinA: a new, inducing iNOS expression bicyclic guanidine alkaloid from the marine sponge Monanchora pulchra. Org. Lett. 2014;(16):4292–4295.
  9. Dyshlovoy S.A., Kudryashova E.K., Kaune M., Makarieva T.N., Shubina L.K., Busenbender T., Denisenko V.A., Popov R.S., Hauschild J., Fedorov S.N., Bokemeyer C., Graefen M., Stonik V.A. Urupocidin C: a new marine guanidine alkaloid which selectively kills prostate cancer cells via mitochondria targeting. Sci. Rep. 2020;(10):9764.
  10. Dyshlovoy S.A., Tabakmakher K.M., Hauschild J., Shchekaleva R.K., Otte K., Guzii A.G., Makarieva T.N., Kudryashova E.K., Fedorov S.N., Shubina L.K., Bokemeyer C., Honecker F., Stonik V.A, von Amsberg G. Guanidine alkaloids from the marine sponge Monanchora pulchra show cytotoxic properties and prevent EGF-induced neoplastic transformation in vitro. Mar. Drugs. 2016;(14):133.
  11. Dyshlovoy S.A., Shubina L.K., Makarieva T.N., Guzii A.G., Hauschild J., Strewinsky N., Berdyshev D.V., Kudryashova E.K., Menshov A.S., Popov R.S., Dmitrenok P.S., Graefen M., Bokemeyer C., von Amsberg G. New guanidine alkaloids batzelladines O and P from the marine sponge Monanchora pulchra induce apoptosis and autophagy in prostate cancer cells. Mar. Drugs. 2022;(20):738.
  12. Dyshlovoy S.A., Kaune M., Malte Kriegs M., Hauschild J., Busenbender T., Shubina L.K., Makarieva T.N., Bokemeyer C., Graefen M., Stonik V.A., von Amsberg G. Marine alkaloid monanchoxymycalin C induces prostate cancer cell death via specific activation of JNK1/2 kinase. Sci. Rep. 2020;(10):13178.
  13. Makarieva T.N., Ivanchina N.V., Dmitrenok P.S., Guzii A., Stonik V.A., Dalisay D.S., Molinski T.F. Oceanalin B, a hybrid α,ω-bifunctionalized sphingoid tetrahydroisoquinoline β-glycoside from the marine sponge Oceanapia sp. Mar. Drugs. 2021;(19):635.
  14. Makarieva T.N., Denisenko V.A., Dmitrenok P.S., Guzii A.G., Santalova E.A., Stonik V.A., MacMillan J.B., Molinski T.F. Oceanalin A, a hybrid α,ω-bifunctionalized sphingoid tetrahydroisoquinoline β-glycoside from the marine sponge Oceanapia sp. Org. Lett. 2005;(7):2897–2900.
  15. Guzii A.G., Makarieva T.N., Fedorov S.N., Menshov A.S., Denisenko V.A., Popov R.S., Yurchenko E.A., Menchinskaya E.S., Grebnev B.B., Iarotsckaia V.V., Kim N.Yu., Stonik V.A. Toporosides A and B, cyclopentenyl-containing ω-glycosylated fatty acid amides, and toporosides C and D from the northwestern pacific marine sponge Stelodoryx toporoki. J. Nat. Prod. 2022;(85):1186−1191.
  16. Einarsdottir E., Liu H.B., Freysdottir J., Gotfredsen C.H., Omarsdottir S. Immunomodulatory N-acyl dopamine glycosides from the Icelandic marine sponge Myxilla incrustans collected at a hydrothermal Vent Site. Planta Med. 2016;(82):903–909.
  17. Kudryashova E.K., Makarieva T.N., Shubina L.K., Guzii A.G., Popov R.S., Menshov A.S., Berdyshev D.V., Pislyagin E.A., Menchinskaya E.S., Grebnev B.B., Stonik V.A. Assimiloside A, a glycolipid with immunomodulatory activity from the Northwestern Pacific marine sponge Hymeniacidon assimilis. J. Nat. Prod. 2023;(86):2073–2078.
  18. Fan B.Y., Lu Y., Yang M., Li J.L., Chen G.T. Evolvulins I and II, resin glycosides with a trihydroxy aglycone unit from Evolvulus alsinoides. Org. Lett. 2019;(21):6548–6551.
  19. Yin F., Hu L., Lou F., Pan R. Dammarane-type glycosides from Gynostemma pentaphyllum. J. Nat. Prod. 2004;(67):942–952.
  20. Dyshlovoy S.A., Fedorov S.N., Svetashev V.I., Makarieva T.N., Kalinovsky A.I., Moiseenko O.P., Krasokhin V.B., Shubina L.K., Guzii A.G., von Amsberg G., Stonik V.A. 1-O-Alkylglycerol ethers from the marine sponge Guitarra abbotti and their cytotoxic activity. Mar. Drugs. 2022;(20):409.
  21. Santalova Е.А., Denisenko V.А., Dmitrenok P.S. Structural analysis of oxidized cerebrosides from the extract of deep-sea sponge Aulosaccus sp.: Occurrence of amide-linked allylically oxygenated fatty acids. Molecules. 2020;(25):6047.
  22. Santalova Е.А., Kuzmich A.S., Chingizova E.A., Menchinskaya E.S., Pislyagin E.A., Dmitrenok P.S. Phytoceramides from the marine sponge Monanchora clathrata: structural analysis and cytoprotective effects. Biomolecules. 2023;(13):677.
  23. Dyshlovoy S.A., Hauschild J., Venz S., Krisp C., Kolbe K., Zapf S., Heinemann S., Fita K.D., Shubina L.K., Makarieva T.N., Guzii A.G., Rohlfing T., Kaune M., Busenbender T., Mair T., Moritz M., Poverennaya E.V., Schlüter H., Serdyuk V., Stonik V.A., Dierlamm J., Bokemeyer C., Mohme M., Westphal M., Lamszus K., von Amsberg G., Maire C.L. Rhizochalinin exhibits anticancer activity and synergizes with EGFR inhibitors in glioblastoma in vitro models. Mol. Pharm. 2023;(20):4994–5005.
  24. Makarieva T., Denisenko V., Stonik V., Milgrom Y.M., Rashkes Y.V. Rhizochalin, a novel secondary metabolite of mixed biosynthesis from the sponge Rhizochalina incrustata. Tetrahedron Lett. 1989;(30):6581−6584.
  25. Tabakmakher K.M., Makarieva T.N., Denisenko V.A., Popov R.S., Dmitrenok P.S., Dyshlovoy S.A., Grebnev B.B., Bokemeyer C., von Amsberg G., Cuong N.X. New trisulfated steroids from the Vietnamese marine sponge Halichondria vansoesti and their PSA expression and glucose uptake inhibitory activities. Mar. Drugs. 2019;(17):E445.
  26. Guzii A.G., Makarieva T.N., Denisenko V.A., Dmitrenok P.S., Burtseva Y.V., Krasokhin V.B., Stonik V.A. Topsentiasterol sulfates with novel iodinated and chlorinated side chains from the marine sponge Topsentia sp. Tetrahedron Lett. 2008;(49):7191–7193.
  27. Fusetani N., Takahashi M., Matsunaga S. Topsentiasterol sulfates, antimicrobial sterolsulfates possessing novel side chains, from a marine sponge, Topsentia sp. Tetrahedron. 1994;(50):7765–7770.
  28. Dyshlovoy S.A., Otte K., Tabakmakher K.M., Hauschild J., Makarieva T.N., Shubina L.K., Fedorov S.N., Bokemeyer C., Stonik V.A., von Amsberg G. Synthesis and anticancer activity of the derivatives of marine compound rhizochalin in castration resistant prostate cancer. Oncotarget. 2018;(9):16962–16973.
  29. Antonarakis E.S., Lu C., Wang H., Luber B., Nakazawa M., Roeser J.C., Chen Y., Mohammad T.A., Chen Y., Fedor H.L., Lotan T.L., Zheng Q., De Marzo A.M., Isaacs J.T., Isaacs W.B., Nadal R., Paller C.J., Denmeade S.R., Carducci M.A., Eisenberger M.A., Luo J. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. New Engl. J. Med. 2014;(371):1028–1038.
  30. Shubina L.K., Makarieva T.N., Denisenko V.A., Popov R.S., Dyshlovoy S.A., Grebnev B.B., Dmitrenok P.S., von Amsberg G., Stonik V.A. Gracilosulfates A–G, monosulfated polyoxygenated steroids from the marine sponge Haliclona gracilis. Mar. Drugs. 2020;(18):454.
  31. Santalova E.A., Denisenko V.A. Steroids from a Far-Eastern glass sponge Aulosaccus sp. Nat. Prod. Commun. 2019;(14):1–8.
  32. Stonik V.A., Kolesnikova S.A. Malabaricane and isomalabaricane triterpenoids, including their glycoconjugated forms. Mar. Drugs. 2021;(19):327.
  33. Cárdenas P., Gamage J., Hettiarachchi C.M., Gunasekera S. Good practices in sponge natural product studies: Revising vouchers with isomalabaricane triterpenes. Mar. Drugs. 2022;(20):190.
  34. Kolesnikova S.A., Lyakhova E.G., Kalinovsky A.I., Berdyshev D.V., Pislyagin E.A., Popov R.S., Grebnev B.B., Makarieva T.N., Minh C.V., Stonik V.A. Cyclobutastellettolides A and B, C19 norterpenoids from a Stelletta sp. marine sponge. J. Nat. Prod. 2019;(82):3196−3200.
  35. Tang S., Pei Y., Fu H., Deng Z., Li J., Proksch P., Lin W. Jaspolides A–F, six new isomalabricane-type terpenoids from the sponge Jaspis sp. Chem. Pharm. Bull. 2006;(54):4–8.
  36. Li J., Xu B., Cui J., Deng Z., de Voogd N.J., Proksch P., Lin W. Globostelletins A–I, cytotoxic isomalabaricane derivatives from the marine sponge Rhabdastrella globostellata. Bioorg. Med. Chem. 2010;(18):4639–4647.
  37. Li J., Zhu H., Ren J., Deng Z., de Voogd N.J., Proksch P., Lin W. Globostelletins J–S, isomalabaricanes with unusual cyclopentane sidechains from the marine sponge Rhabdastrella globostellata. Tetrahedron. 2012;(68):559–565.
  38. Kolesnikova S.A., Lyakhova E.G., Kozhushnaya A.B., Kalinovsky A.I., Berdyshev D.V., Popov R.S., Stonik V.A. New isomalabaricane-derived metabolites from a Stelletta sp. marine sponge. Molecules. 2021;(26):678.
  39. Kozhushnaya A.B., Kolesnikova S.A., Yurchenko E.A., Lyakhova E.G., Menshov A.S., Kalinovsky A.I., Popov R.S., Dmitrenok P.S., Ivanchina N.V. Rhabdastrellosides A and B: two new isomalabaricane glycosides from the marine sponge Rhabdastrella globostellata, and their cytotoxic and cytoprotective effects. Mar. Drugs. 2023;(21):554.
  40. Ivanchina N.V., Kalinin V.I. Triterpene and steroid glycosides from marine sponges (Porifera, Demospongiae): structures, taxonomical distribution, biological activities. Molecules. 2023;(28):2503.
  41. Tabudravu J.N., Jaspars M. Stelliferin riboside, a triterpene monosaccharide isolated from the Fijian sponge Geodia globostellifera. J. Nat. Prod. 2001;(64):813–815.
  42. Fouad M., Edrada R.A., Ebel R., Wray V., Muller W.E.G., Lin W.H., Proksch P. Cytotoxic isomalabaricane triterpenoids from the marine sponge Rhabdastrella globostellata. J. Nat. Prod. 2006;(69):211–218.
  43. Clement J.A., Li M., Hecht S.M., Kingston D.I. Bioactive isomalabaricane triterpenoids from Rhabdastrella globostellata that stabilize the binding of DNA polymerase β to DNA. J. Nat. Prod. 2006;(69):373–376.
  44. Dyshlovoy S.A., Shubina L.K., Makarieva T.N., Hauschild J., Strewinsky N., Guzii A.G., Menshov A.S., Popov R.S., Grebnev B.B., Busenbender T., Oh-Hohenhorst S.J., Maurer T., Tilki D., Graefen M., Bokemeyer C., Stonik V.A., von Amsberg G. New diterpenes from the marine sponge Spongionella sp. overcome drug resistance in prostate cancer by inhibition of P-glycoprotein. Sci. Rep. 2022;(12):13570.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structures of guanidine alkaloids 1-5 isolated from the marine sponge Monanchora pulchra

Download (125KB)
3. Fig. 2. Structures of oceanalins B (6) and A (7) isolated from the marine sponge Oceanapia sp.

Download (58KB)
4. Fig. 3. Structures of toporosides A-D (8-11) from the marine sponge Stelodoryx toporoki

Download (140KB)
5. Fig. 4. Structure of assimiloside A (12) from the marine sponge Hymeniacidon assimilis

Download (60KB)
6. Fig. 5. Structures of new 1-O-alkylglycerol esters (13-18) from the marine sponge Guitarra abbotti

Download (149KB)
7. Fig. 6. Structures of oxidised cerebrosides from the marine sponge Aulosaccus sp.

Download (185KB)
8. Fig. 7. Ceramide structures from the sponge Monanchora clathrata

Download (155KB)
9. Fig. 8. Structure of rhizochalinin (28)

Download (28KB)
10. Fig. 9. Structures of steroids 29-38 from the marine sponge Halichondria vansoesti

Download (175KB)
11. Fig. 10. Structures of gracilosulphates A-G (39-45) from the marine sponge Haliclona gracilis

Download (142KB)
12. Fig. 11. Structures of steroids from the marine sponge Aulosaccus sp.

Download (206KB)
13. Fig. 12. Structures of cyclobutastellolides A (57) and B (58) from the marine sponge Rhabdastrella globostellata

Download (50KB)
14. Fig. 13. Structures of stellettins Q-V (59-64) and globostelletin N (65) from the marine sponge Rhabdastrella globostellata

Download (129KB)
15. Fig. 14. Structures of rhabdastrellosides A and B (66 and 67) from the marine sponge Rhabdastrella globostellata

Download (79KB)
16. Fig. 15. Structures of diterpenoids (68-73) from the marine sponge Spongionella sp.

Download (121KB)

Copyright (c) 2025 Russian Academy of Sciences