Ferroelectric composites BaTiO3 and SrTiO3 with a fusible additive B2O3

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We presented the results of a study of the structural and electrical properties of ferroelectric composites based on barium and strontium titanates with the addition of boric anhydride synthesized by low-temperature sintering. The obtained materials are promising as a basis for the implementation of electrically controlled metamaterials with volumetric ferroelectric inhomogeneities.

全文:

受限制的访问

作者简介

A. Tumarkin

Saint Petersburg Electrotechnical University “LETI”

编辑信件的主要联系方式.
Email: avtumarkin@yandex.ru
俄罗斯联邦, St. Petersburg, 197022

O. Sinelshchikova

Saint Petersburg Electrotechnical University “LETI”; Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

Email: avtumarkin@yandex.ru
俄罗斯联邦, St. Petersburg, 197022; St. Petersburg, 199034

D. Zigankova

Saint Petersburg Electrotechnical University “LETI”; Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

Email: avtumarkin@yandex.ru
俄罗斯联邦, St. Petersburg, 197022; St. Petersburg, 199034

N. Tyurnina

Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

Email: avtumarkin@yandex.ru
俄罗斯联邦, St. Petersburg, 199034

Z. Tyurnina

Saint Petersburg Electrotechnical University “LETI”; Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

Email: avtumarkin@yandex.ru
俄罗斯联邦, St. Petersburg, 197022; St. Petersburg, 199034

A. Gagarin

Saint Petersburg Electrotechnical University “LETI”

Email: avtumarkin@yandex.ru
俄罗斯联邦, St. Petersburg, 197022

A. Karamov

Saint Petersburg Electrotechnical University “LETI”

Email: avtumarkin@yandex.ru
俄罗斯联邦, St. Petersburg, 197022

参考

  1. Turpin J.P., Bossard J.A., Morgan K.L. et al. // Int. J. Antennas Propag. 2014. V. 2014. P. 429837.
  2. Вендик И.Б., Вендик О.Г. // Техн. физика. 2013. Т. 58. № 1. С. 3; Vendik I.B., Vendik O.G. // Tech. Phys. 2013. V. 58. No. 1. P. 1.
  3. Симовский К.Р. // Опт. и спектроск. 2009. Т. 107. № 5. С. 766; Simovski C.R. // Opt. Spectrosc. 2009. V. 107. No 5. P. 726.
  4. Zhang F., Feng S., Qiu K. et al. // Appl. Phys. Lett. 2015. V. 106. No. 9. Art. No. 091907.
  5. Xiong H., Hong J.S., Luo C.M. et al. // J. Appl. Phys. 2013. V. 114. No. 6. Art. No. 064109.
  6. Yang Q., Zhang Y. // Electron. Lett. 2014. V. 50. No. 4. P. 290.
  7. Gil M., Bonache J., Martin F. et al. // Metamaterials. 2008. V. 2. No. 4. P. 186.
  8. Liu X., Liu H., Sun Q. et al. // Appl. Optics. 2015. V. 54. No. 11. P. 3478.
  9. Xu W., Xie L., Ying Y. // Nanoscale. 2017. V. 9. No. 37. P. 13864.
  10. Marqués R., Martin F., Sorolla M. Metamaterials with negative parameters: theory, design and microwave applications. N.J.: John Wiley and Sons Inc., 2008. 315 p.
  11. Sherman V.O., Tagantsev A.K., Setter N. // Proc. 14th IEEE ISAF-04. (Lausanne, 2004). P. 33.
  12. Вендик О.Г., Медведева Н.Ю., Зубко С.П. // ФТТ. 2009. Т. 51. № 7. С. 1405; Vendik O.G., Medvedeva N.Y., Zubko S.P. // Phys. Sol. State. 2009. V. 51. No. 7. P. 1492.
  13. Vial B., Hao Y. // Opt. Mater. Exp. 2021. V. 11. No. 5. P. 1457.
  14. Jiang J., Fang R., Han J. et al. // Ferroelectrics. 2020. V. 568. No. 1. P. 79.
  15. Zhang D., Lu P., Misra S. et al. // Adv. Opt. Mater. 2021. V. 9. No. 1. Art. No. 2001154.
  16. Liu J., Wang X., Gao X. et al. // Appl. Mater. Today. 2020. V. 21. Art. No. 100856.
  17. Tumarkin A., Tyurnina N., Tyurnina Z. et al. // Ferroelectrics. 2023. V. 605. No. 1. P. 105.
  18. Tumarkin A., Tyurnina N., Tyurnina Z. et al. // Coatings. 2023. V. 13. No. 1. P. 117.
  19. Peláiz-Barranco A. Advances in ferroelectrics. Norderstedt: Intechopen, 2012. 532 p.
  20. Bharathi P., Varma K.B.R. // J. Electron. Mater. 2014. V. 43. P. 493.
  21. Ozgul M., Kucuk A. // Ceram. Int. 2016. V. 42. No. 16. P. 19119.
  22. Rhim S.M., Hong S., Bak et al. // J. Amer. Ceram. Soc. 2000. V. 83. No. 5. P. 1145.
  23. Teoh L.G., Lee Y.C., Huang et al. // Int. J. Appl. Ceram. Technol. 2010. V. 7. Art. No. E71.
  24. Zubko P., Catalan G., Tagantsev A.K. // Ann. Rev. Mater. Res. 2013. V. 43. P. 387.
  25. Yudin P.V., Tagantsev A.K. // Nanotechnology. 2013. V. 24. No. 43. Art. No. 432001.
  26. Vendik O.G., Ter-Martirosyan L.T., Zubko S.P. // J. Appl. Phys. 1998. V. 84. P. 993.
  27. Tagantsev A.K. // Appl. Phys. Lett. 2000. V. 76. P. 1182.
  28. Вендик О.Г., Никольский М.А., Гашинова М.С. // Письма в ЖТФ. 2003. Т. 29. № 5. С. 20; Vendik O.G., Nikol’skii M.A., Gashinova M.S. // Tech. Phys. Lett. 2003. V. 29. No. 2. P. 130.
  29. Tagantsev A.K., Sherman V.O., Astafiev et al. // J. Electroceram. 2003. V. 11. P. 5.
  30. Коротков Л.Н., Толстых Н.А., Короткова Т.Н. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1258; Korotkov L.N., Tolstykh N.A., Korotkova T.N. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 9. P. 1068.
  31. Семёнов А.А., Дедык А.И., Пахомов О.В. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 3. С. 364; Semenov A.A., Dedyk A.I., Pakhomov O.V. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 3. P. 317.
  32. Коротков Л.Н., Мандалави В.М., Короткова Т.Н. и др. // Изв. РАН. Сер. физ. 2016. Т. 80. № 9. С. 1173; Korotkov L.N., Mandalawi W.M., Korotkova T.N. et al. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 9. P. 1074.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Histograms of water absorption of BTO/B2O3 and STO/B2O3 composites obtained under different temperature conditions (composition is indicated in wt.%).

下载 (358KB)
3. Fig. 2. AFM images of the surface of the studied composites BTO/B2O3 (a) and STO/B2O3 (b), synthesized at a temperature of 900 °C.

下载 (845KB)
4. Fig. 3. Diffraction patterns of BTO/B2O3 and STO/B2O3 composites synthesized at 900 °C.

下载 (257KB)
5. Fig. 4. Dependences of the normalized capacitance of capacitors and permittivity (a), as well as the tangent of the dielectric loss angle (b) on the strength of the control field, obtained for BTO/B2O3 and STO/B2O3 composites.

下载 (104KB)

版权所有 © Russian Academy of Sciences, 2024