Ferroelectric composites BaTiO3 and SrTiO3 with a fusible additive B2O3

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We presented the results of a study of the structural and electrical properties of ferroelectric composites based on barium and strontium titanates with the addition of boric anhydride synthesized by low-temperature sintering. The obtained materials are promising as a basis for the implementation of electrically controlled metamaterials with volumetric ferroelectric inhomogeneities.

Full Text

Restricted Access

About the authors

A. V. Tumarkin

Saint Petersburg Electrotechnical University “LETI”

Author for correspondence.
Email: avtumarkin@yandex.ru
Russian Federation, St. Petersburg, 197022

O. Y. Sinelshchikova

Saint Petersburg Electrotechnical University “LETI”; Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

Email: avtumarkin@yandex.ru
Russian Federation, St. Petersburg, 197022; St. Petersburg, 199034

D. I. Zigankova

Saint Petersburg Electrotechnical University “LETI”; Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

Email: avtumarkin@yandex.ru
Russian Federation, St. Petersburg, 197022; St. Petersburg, 199034

N. G. Tyurnina

Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

Email: avtumarkin@yandex.ru
Russian Federation, St. Petersburg, 199034

Z. G. Tyurnina

Saint Petersburg Electrotechnical University “LETI”; Grebenshchikov Institute of Silicate Chemistry of the Russian Academy of Sciences

Email: avtumarkin@yandex.ru
Russian Federation, St. Petersburg, 197022; St. Petersburg, 199034

A. G. Gagarin

Saint Petersburg Electrotechnical University “LETI”

Email: avtumarkin@yandex.ru
Russian Federation, St. Petersburg, 197022

A. R. Karamov

Saint Petersburg Electrotechnical University “LETI”

Email: avtumarkin@yandex.ru
Russian Federation, St. Petersburg, 197022

References

  1. Turpin J.P., Bossard J.A., Morgan K.L. et al. // Int. J. Antennas Propag. 2014. V. 2014. P. 429837.
  2. Вендик И.Б., Вендик О.Г. // Техн. физика. 2013. Т. 58. № 1. С. 3; Vendik I.B., Vendik O.G. // Tech. Phys. 2013. V. 58. No. 1. P. 1.
  3. Симовский К.Р. // Опт. и спектроск. 2009. Т. 107. № 5. С. 766; Simovski C.R. // Opt. Spectrosc. 2009. V. 107. No 5. P. 726.
  4. Zhang F., Feng S., Qiu K. et al. // Appl. Phys. Lett. 2015. V. 106. No. 9. Art. No. 091907.
  5. Xiong H., Hong J.S., Luo C.M. et al. // J. Appl. Phys. 2013. V. 114. No. 6. Art. No. 064109.
  6. Yang Q., Zhang Y. // Electron. Lett. 2014. V. 50. No. 4. P. 290.
  7. Gil M., Bonache J., Martin F. et al. // Metamaterials. 2008. V. 2. No. 4. P. 186.
  8. Liu X., Liu H., Sun Q. et al. // Appl. Optics. 2015. V. 54. No. 11. P. 3478.
  9. Xu W., Xie L., Ying Y. // Nanoscale. 2017. V. 9. No. 37. P. 13864.
  10. Marqués R., Martin F., Sorolla M. Metamaterials with negative parameters: theory, design and microwave applications. N.J.: John Wiley and Sons Inc., 2008. 315 p.
  11. Sherman V.O., Tagantsev A.K., Setter N. // Proc. 14th IEEE ISAF-04. (Lausanne, 2004). P. 33.
  12. Вендик О.Г., Медведева Н.Ю., Зубко С.П. // ФТТ. 2009. Т. 51. № 7. С. 1405; Vendik O.G., Medvedeva N.Y., Zubko S.P. // Phys. Sol. State. 2009. V. 51. No. 7. P. 1492.
  13. Vial B., Hao Y. // Opt. Mater. Exp. 2021. V. 11. No. 5. P. 1457.
  14. Jiang J., Fang R., Han J. et al. // Ferroelectrics. 2020. V. 568. No. 1. P. 79.
  15. Zhang D., Lu P., Misra S. et al. // Adv. Opt. Mater. 2021. V. 9. No. 1. Art. No. 2001154.
  16. Liu J., Wang X., Gao X. et al. // Appl. Mater. Today. 2020. V. 21. Art. No. 100856.
  17. Tumarkin A., Tyurnina N., Tyurnina Z. et al. // Ferroelectrics. 2023. V. 605. No. 1. P. 105.
  18. Tumarkin A., Tyurnina N., Tyurnina Z. et al. // Coatings. 2023. V. 13. No. 1. P. 117.
  19. Peláiz-Barranco A. Advances in ferroelectrics. Norderstedt: Intechopen, 2012. 532 p.
  20. Bharathi P., Varma K.B.R. // J. Electron. Mater. 2014. V. 43. P. 493.
  21. Ozgul M., Kucuk A. // Ceram. Int. 2016. V. 42. No. 16. P. 19119.
  22. Rhim S.M., Hong S., Bak et al. // J. Amer. Ceram. Soc. 2000. V. 83. No. 5. P. 1145.
  23. Teoh L.G., Lee Y.C., Huang et al. // Int. J. Appl. Ceram. Technol. 2010. V. 7. Art. No. E71.
  24. Zubko P., Catalan G., Tagantsev A.K. // Ann. Rev. Mater. Res. 2013. V. 43. P. 387.
  25. Yudin P.V., Tagantsev A.K. // Nanotechnology. 2013. V. 24. No. 43. Art. No. 432001.
  26. Vendik O.G., Ter-Martirosyan L.T., Zubko S.P. // J. Appl. Phys. 1998. V. 84. P. 993.
  27. Tagantsev A.K. // Appl. Phys. Lett. 2000. V. 76. P. 1182.
  28. Вендик О.Г., Никольский М.А., Гашинова М.С. // Письма в ЖТФ. 2003. Т. 29. № 5. С. 20; Vendik O.G., Nikol’skii M.A., Gashinova M.S. // Tech. Phys. Lett. 2003. V. 29. No. 2. P. 130.
  29. Tagantsev A.K., Sherman V.O., Astafiev et al. // J. Electroceram. 2003. V. 11. P. 5.
  30. Коротков Л.Н., Толстых Н.А., Короткова Т.Н. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 9. С. 1258; Korotkov L.N., Tolstykh N.A., Korotkova T.N. et al. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 9. P. 1068.
  31. Семёнов А.А., Дедык А.И., Пахомов О.В. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 3. С. 364; Semenov A.A., Dedyk A.I., Pakhomov O.V. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 3. P. 317.
  32. Коротков Л.Н., Мандалави В.М., Короткова Т.Н. и др. // Изв. РАН. Сер. физ. 2016. Т. 80. № 9. С. 1173; Korotkov L.N., Mandalawi W.M., Korotkova T.N. et al. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. No. 9. P. 1074.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Histograms of water absorption of BTO/B2O3 and STO/B2O3 composites obtained under different temperature conditions (composition is indicated in wt.%).

Download (358KB)
3. Fig. 2. AFM images of the surface of the studied composites BTO/B2O3 (a) and STO/B2O3 (b), synthesized at a temperature of 900 °C.

Download (845KB)
4. Fig. 3. Diffraction patterns of BTO/B2O3 and STO/B2O3 composites synthesized at 900 °C.

Download (257KB)
5. Fig. 4. Dependences of the normalized capacitance of capacitors and permittivity (a), as well as the tangent of the dielectric loss angle (b) on the strength of the control field, obtained for BTO/B2O3 and STO/B2O3 composites.

Download (104KB)

Copyright (c) 2024 Russian Academy of Sciences