Detached Plasma Studies in GOL-NB with Extra Gas Injection

Capa

Citar

Texto integral

Resumo

The magnetic system of an open trap usually includes expansion sections located between highfield magnetic mirrors and end surfaces that receive plasma. In the GOL-NB device, an arc plasma gun is located in one of the expanders, which creates a low-temperature starting plasma in the confinement area. The parameters of the surface plasma sheath affect the electrical connection of the confinement area with the walls and, thereby, affect the contribution of the line-tying effect to the plasma stability and the longitudinal energy losses from the trap. The experiments with additional hydrogen injection into the plasma gun were carried out at GOL-NB. We observed a radiating plasma formation detached from the surface, which visually corresponds to that in radiating divertors in tokamaks. In both standard and detached modes, decaying plasma existed near the receiving electrodes during the entire observation time after the discharge current was terminated. In the central trap of GOL-NB, some structures in the Fourier spectrogram of magnetic fluctuations manifest earlier in the detachment mode than in the standard mode and have lower frequencies. We associate these structures with the onset of interchange-like modes due to the loss of plasma stabilization by the line-tying to the conducting ends. The observed plasma response to the additional gas supply confirmed our understanding of the line-tying effect as the main factor stabilizing the plasma core in the initial phase of density accumulation in the central trap.

Sobre autores

V. Postupaev

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: V.V.Postupaev@inp.nsk.su
Rússia, Novosibirsk, 630090

V. Batkin

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: V.V.Postupaev@inp.nsk.su
Rússia, Novosibirsk, 630090

I. Ivanov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: V.V.Postupaev@inp.nsk.su
Rússia, Novosibirsk, 630090

K. Kuklin

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: V.V.Postupaev@inp.nsk.su
Rússia, Novosibirsk, 630090

N. Melnikov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: V.V.Postupaev@inp.nsk.su
Rússia, Novosibirsk, 630090

K. Mekler

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: V.V.Postupaev@inp.nsk.su
Rússia, Novosibirsk, 630090

A. Rovenskikh

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: V.V.Postupaev@inp.nsk.su
Rússia, Novosibirsk, 630090

E. Sidorov

Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences

Email: V.V.Postupaev@inp.nsk.su
Rússia, Novosibirsk, 630090

Bibliografia

  1. Boedo J., McLean A. G., Rudakov D. L., and Watkins J. G., Plasma Phys. Control. Fusion 60, 044008 (2018). https://doi.org/10.1088/1361-6587/aaa2ec
  2. Cavedon M., Kurzan B., Bernert M., et al., Nucl. Fusion 62, 066027 (2022). https://doi.org/10.1088/1741-4326/ac6071
  3. Feng Y., Jakubowski M., König R., et al., Nucl. Fusion 61, 086012 (2021). https://doi.org/10.1088/1741-4326/ac0772
  4. Guo X., Tanaka H., Kajita S., Ohno N., Hattori S., and Sawada K., Plasma Fusion Res. 17, 2402027 (2022). https://doi.org/10.1585/pfr.17.2402027
  5. Islam M. S., Nakashima Y., Hatayama A., et al., Plasma Fusion Res. 14, 2402016 (2019). https://doi.org/10.1585/pfr.14.2402016
  6. Ješko K., Marandet Y., Bufferand H., Gunn J. P., van der Meiden H. J., and Ciraolo G., Plasma Phys. Control. Fusion 60, 125009 (2018). https://doi.org/10.1088/1361-6587/aae80d
  7. Kang I. J., Bae M.-K., Park I. S., et al., J. Korean Phys. Soc. 80, 717 (2022). https://doi.org/10.1007/s40042-022-00397-y
  8. Leonard A. W., Plasma Phys. Control. Fusion 60, 044001 (2018). https://doi.org/10.1088/1361-6587/aaa7a9
  9. Mukai K., Masuzaki S., Hayashi Y., et al., Nucl. Fusion 61, 126018 (2021). https://doi.org/10.1088/1741-4326/ac2bbc
  10. Perillo R., Chandra R., Akkermans G.R. A., Classen I. G. J., Korving S. Q., and Magnum-PSI Team, Phys. Plasmas 26,102502 (2019). https://doi.org/10.1063/1.5120180
  11. Pitts R. A., Bonnin X., Escourbiac F., et al., Nucl. Mater. Energy 20, 100696 (2019). https://doi.org/10.1016/j.nme.2019.100696
  12. Shoshin A. A., Arakcheev A. S., Arzhannikov A. V., et al. Fusion Eng. Design 114, 157 (2017). https://doi.org/10.1016/j.fusengdes.2016.12.019
  13. Soukhanovskii V. A., Allen S. L., Fenstermacher M. E., et al., Nucl. Fusion 58, 036018 (2018). https://doi.org/10.1088/1741-4326/aaa6de
  14. Wang L., Wang H. Q., Eldon D., et al., Nucl. Fusion 62, 076002 (2022). https://doi.org/10.1088/1741-4326/ac4774
  15. Matthews G. F., Nucl J. Mater. 220, 104 (1995). https://doi.org/10.1016/0022-3115(94)00450-1
  16. Gota H., Binderbauer M. W., Tajima T., et al., Nucl. Fusion 61, 106039 (2021). https://doi.org/10.1088/1741-4326/ac2521
  17. Li Q., Zhu G., Ren B., Ying J., Yang Z., and Sun X., Plasma Sci. Technol. 25, 025102 (2023). https://doi.org/10.1088/2058-6272/ac8e45
  18. Postupaev V. V., Batkin V. I., Beklemishev A. D., et al., Nucl. Fusion 57, 036012 (2017). https://doi.org/10.1088/1741-4326/57/3/036012
  19. Sudnikov A. V., Beklemishev A. D., Postupaev V. V., Burdakov A. V., Ivanov I. A., Vasilyeva N. G., Kuklin K. N., and Sidorov E. N., Fusion Eng. Design 122, 86 (2017). https://doi.org/10.1016/j.fusengdes.2017.09.005
  20. Yakovlev D. V., Shalashov A. G., Gospodchikov E. D., Maximov V. V., Prikhodko V. V., Savkin V. Ya., Soldatkina E. I., Solomakhin A. L., and Bagryansky P. A., Nucl. Fusion 58, 094001 (2018). https://doi.org/10.1088/1741-4326/aacb88
  21. Сковородин Д. И., Черноштанов И. С., Амиров В. Х., и др., Физика плазмы 49, 831 (2023). https://doi.org/10.31857/S0367292123600322
  22. Bagryansky P. A., Beklemishev A. D., and Postupaev V. V., J. Fusion Energy 38, 162 (2019). https://doi.org/10.1007/s10894-018-0174-1
  23. Bagryansky P. A., Chen Z., Kotelnikov I. A., Yakovlev D. V., Prikhodko V. V., Zeng Q., Bai Y., Yu J., Ivanov A. A., and Wu Y., Nucl. Fusion 60, 036005 (2020). https://doi.org/10.1088/1741-4326/ab668d
  24. Egedal J., Endrizzi D., Forest C. B., and Fowler T. K., Nucl. Fusion 62, 126053 (2022). https://doi.org/10.1088/1741-4326/ac99ec
  25. Prater R., Phys. Fluids 17, 193 (1974). https://doi.org/10.1063/1.1694587
  26. Molvik A. W., Breun R. A., Golovato S. N., Hershkowitz N., McVey B., Post R. S., Smatlak D., and Yujiri L., Phys. Fluids 27, 2711 (1984). https://doi.org/10.1063/1.864575
  27. Конкашбаев И. К., Ландман И. С., Улинич Ф. Р., ЖЭТФ 74, 956 (1978).
  28. Abramov I. S., Gospodchikov E. D., Shaposhnikov R. A., and Shalashov A. G., Nucl. Fusion 59, 106004 (2019). https://doi.org/10.1088/1741-4326/ab2ef8
  29. Skovorodin D. I., Phys. Plasmas 26, 012503 (2019). https://doi.org/10.1063/1.5043072
  30. Postupaev V. V., Burdakov A. V., and Ivanov A. A., Fusion Sci. Technol. 68, 92 (2015). https://doi.org/10.13182/FST14-846
  31. Иванов И. А., Баткин В. И., Бурдаков А. В., и др., Физика плазмы 47, 856 (2021). https://doi.org/10.31857/S0367292121090031
  32. Postupaev V. V., Batkin V. I., Burdakov A. V., et al., Nucl. Fusion 62, 086003 (2022). https://doi.org/10.1088/1741-4326/ac69fa
  33. Иванов И. А., Полозова П. А., Баткин В. И., и др., Физика плазмы 49, 1059 (2023). https://doi.org/10.31857/S0367292123601030
  34. Postupaev V. V., Batkin V. I., Burdakov A. V., Burmasov V. S., Ivanov I. A., Kuklin K. N., Mekler K. I., Rovenskikh A. F., and Sidorov E. N., Plasma Phys. Control. Fusion 62, 025008 (2020). https://doi.org/10.1088/1361-6587/ab53c2
  35. Sidorov E. N., Batkin V. I., Burdakov A. V., Ivanov I. A., Kuklin K. N., Mekler K. I., Nikishin A. V., Postupaev V. V., Rovenskikh A. F., J. Instrum. 16, T11006 (2021). https://doi.org/10.1088/1748-0221/16/11/T11006
  36. Laframboise J. G., Theory of Spherical and Cylindrical Langmuir Probes in a Collisionless, Maxwellian Plasma at Rest. Ph. D. Thesis (Toronto Univ. Downsview (Ontario) Inst. for Aerospace Studies. University of Toronto, Toronto, Canada, 1966).
  37. Деревянкин Г. Е., Дудников В. Г., Журавлев П. А., ПТЭ 18 (No. 5), 168 (1975).
  38. Chen F. F., Langmuir probe diagnostics, in Proc. Mini-Course on Plasma Diagnostics, IEEE ICOPS meeting (June 5, 2003, Jeju, Korea), p. 20—111.
  39. Beklemishev A. D., Bagryansky P. A., Chaschin M. S., Soldatkina E. I., Fusion Sci. Technol. 57, 351 (2010). https://doi.org/10.13182/FST10-A9497

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024