Detached Plasma Studies in GOL-NB with Extra Gas Injection
- Authors: Postupaev V.V.1, Batkin V.I.1, Ivanov I.A.1, Kuklin K.N.1, Melnikov N.A.1, Mekler K.I.1, Rovenskikh A.F.1, Sidorov E.N.1
-
Affiliations:
- Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences
- Issue: Vol 50, No 2 (2024)
- Pages: 168-179
- Section: МАГНИТНЫЕ ЛОВУШКИ
- URL: https://archivog.com/0367-2921/article/view/668799
- DOI: https://doi.org/10.31857/S0367292124020021
- EDN: https://elibrary.ru/SCXLHF
- ID: 668799
Cite item
Full Text
Abstract
The magnetic system of an open trap usually includes expansion sections located between highfield magnetic mirrors and end surfaces that receive plasma. In the GOL-NB device, an arc plasma gun is located in one of the expanders, which creates a low-temperature starting plasma in the confinement area. The parameters of the surface plasma sheath affect the electrical connection of the confinement area with the walls and, thereby, affect the contribution of the line-tying effect to the plasma stability and the longitudinal energy losses from the trap. The experiments with additional hydrogen injection into the plasma gun were carried out at GOL-NB. We observed a radiating plasma formation detached from the surface, which visually corresponds to that in radiating divertors in tokamaks. In both standard and detached modes, decaying plasma existed near the receiving electrodes during the entire observation time after the discharge current was terminated. In the central trap of GOL-NB, some structures in the Fourier spectrogram of magnetic fluctuations manifest earlier in the detachment mode than in the standard mode and have lower frequencies. We associate these structures with the onset of interchange-like modes due to the loss of plasma stabilization by the line-tying to the conducting ends. The observed plasma response to the additional gas supply confirmed our understanding of the line-tying effect as the main factor stabilizing the plasma core in the initial phase of density accumulation in the central trap.
Keywords
About the authors
V. V. Postupaev
Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences
Author for correspondence.
Email: V.V.Postupaev@inp.nsk.su
Russian Federation, Novosibirsk, 630090
V. I. Batkin
Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences
Email: V.V.Postupaev@inp.nsk.su
Russian Federation, Novosibirsk, 630090
I. A. Ivanov
Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences
Email: V.V.Postupaev@inp.nsk.su
Russian Federation, Novosibirsk, 630090
K. N. Kuklin
Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences
Email: V.V.Postupaev@inp.nsk.su
Russian Federation, Novosibirsk, 630090
N. A. Melnikov
Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences
Email: V.V.Postupaev@inp.nsk.su
Russian Federation, Novosibirsk, 630090
K. I. Mekler
Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences
Email: V.V.Postupaev@inp.nsk.su
Russian Federation, Novosibirsk, 630090
A. F. Rovenskikh
Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences
Email: V.V.Postupaev@inp.nsk.su
Russian Federation, Novosibirsk, 630090
E. N. Sidorov
Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences
Email: V.V.Postupaev@inp.nsk.su
Russian Federation, Novosibirsk, 630090
References
- Boedo J., McLean A. G., Rudakov D. L., and Watkins J. G., Plasma Phys. Control. Fusion 60, 044008 (2018). https://doi.org/10.1088/1361-6587/aaa2ec
- Cavedon M., Kurzan B., Bernert M., et al., Nucl. Fusion 62, 066027 (2022). https://doi.org/10.1088/1741-4326/ac6071
- Feng Y., Jakubowski M., König R., et al., Nucl. Fusion 61, 086012 (2021). https://doi.org/10.1088/1741-4326/ac0772
- Guo X., Tanaka H., Kajita S., Ohno N., Hattori S., and Sawada K., Plasma Fusion Res. 17, 2402027 (2022). https://doi.org/10.1585/pfr.17.2402027
- Islam M. S., Nakashima Y., Hatayama A., et al., Plasma Fusion Res. 14, 2402016 (2019). https://doi.org/10.1585/pfr.14.2402016
- Ješko K., Marandet Y., Bufferand H., Gunn J. P., van der Meiden H. J., and Ciraolo G., Plasma Phys. Control. Fusion 60, 125009 (2018). https://doi.org/10.1088/1361-6587/aae80d
- Kang I. J., Bae M.-K., Park I. S., et al., J. Korean Phys. Soc. 80, 717 (2022). https://doi.org/10.1007/s40042-022-00397-y
- Leonard A. W., Plasma Phys. Control. Fusion 60, 044001 (2018). https://doi.org/10.1088/1361-6587/aaa7a9
- Mukai K., Masuzaki S., Hayashi Y., et al., Nucl. Fusion 61, 126018 (2021). https://doi.org/10.1088/1741-4326/ac2bbc
- Perillo R., Chandra R., Akkermans G.R. A., Classen I. G. J., Korving S. Q., and Magnum-PSI Team, Phys. Plasmas 26,102502 (2019). https://doi.org/10.1063/1.5120180
- Pitts R. A., Bonnin X., Escourbiac F., et al., Nucl. Mater. Energy 20, 100696 (2019). https://doi.org/10.1016/j.nme.2019.100696
- Shoshin A. A., Arakcheev A. S., Arzhannikov A. V., et al. Fusion Eng. Design 114, 157 (2017). https://doi.org/10.1016/j.fusengdes.2016.12.019
- Soukhanovskii V. A., Allen S. L., Fenstermacher M. E., et al., Nucl. Fusion 58, 036018 (2018). https://doi.org/10.1088/1741-4326/aaa6de
- Wang L., Wang H. Q., Eldon D., et al., Nucl. Fusion 62, 076002 (2022). https://doi.org/10.1088/1741-4326/ac4774
- Matthews G. F., Nucl J. Mater. 220, 104 (1995). https://doi.org/10.1016/0022-3115(94)00450-1
- Gota H., Binderbauer M. W., Tajima T., et al., Nucl. Fusion 61, 106039 (2021). https://doi.org/10.1088/1741-4326/ac2521
- Li Q., Zhu G., Ren B., Ying J., Yang Z., and Sun X., Plasma Sci. Technol. 25, 025102 (2023). https://doi.org/10.1088/2058-6272/ac8e45
- Postupaev V. V., Batkin V. I., Beklemishev A. D., et al., Nucl. Fusion 57, 036012 (2017). https://doi.org/10.1088/1741-4326/57/3/036012
- Sudnikov A. V., Beklemishev A. D., Postupaev V. V., Burdakov A. V., Ivanov I. A., Vasilyeva N. G., Kuklin K. N., and Sidorov E. N., Fusion Eng. Design 122, 86 (2017). https://doi.org/10.1016/j.fusengdes.2017.09.005
- Yakovlev D. V., Shalashov A. G., Gospodchikov E. D., Maximov V. V., Prikhodko V. V., Savkin V. Ya., Soldatkina E. I., Solomakhin A. L., and Bagryansky P. A., Nucl. Fusion 58, 094001 (2018). https://doi.org/10.1088/1741-4326/aacb88
- Сковородин Д. И., Черноштанов И. С., Амиров В. Х., и др., Физика плазмы 49, 831 (2023). https://doi.org/10.31857/S0367292123600322
- Bagryansky P. A., Beklemishev A. D., and Postupaev V. V., J. Fusion Energy 38, 162 (2019). https://doi.org/10.1007/s10894-018-0174-1
- Bagryansky P. A., Chen Z., Kotelnikov I. A., Yakovlev D. V., Prikhodko V. V., Zeng Q., Bai Y., Yu J., Ivanov A. A., and Wu Y., Nucl. Fusion 60, 036005 (2020). https://doi.org/10.1088/1741-4326/ab668d
- Egedal J., Endrizzi D., Forest C. B., and Fowler T. K., Nucl. Fusion 62, 126053 (2022). https://doi.org/10.1088/1741-4326/ac99ec
- Prater R., Phys. Fluids 17, 193 (1974). https://doi.org/10.1063/1.1694587
- Molvik A. W., Breun R. A., Golovato S. N., Hershkowitz N., McVey B., Post R. S., Smatlak D., and Yujiri L., Phys. Fluids 27, 2711 (1984). https://doi.org/10.1063/1.864575
- Конкашбаев И. К., Ландман И. С., Улинич Ф. Р., ЖЭТФ 74, 956 (1978).
- Abramov I. S., Gospodchikov E. D., Shaposhnikov R. A., and Shalashov A. G., Nucl. Fusion 59, 106004 (2019). https://doi.org/10.1088/1741-4326/ab2ef8
- Skovorodin D. I., Phys. Plasmas 26, 012503 (2019). https://doi.org/10.1063/1.5043072
- Postupaev V. V., Burdakov A. V., and Ivanov A. A., Fusion Sci. Technol. 68, 92 (2015). https://doi.org/10.13182/FST14-846
- Иванов И. А., Баткин В. И., Бурдаков А. В., и др., Физика плазмы 47, 856 (2021). https://doi.org/10.31857/S0367292121090031
- Postupaev V. V., Batkin V. I., Burdakov A. V., et al., Nucl. Fusion 62, 086003 (2022). https://doi.org/10.1088/1741-4326/ac69fa
- Иванов И. А., Полозова П. А., Баткин В. И., и др., Физика плазмы 49, 1059 (2023). https://doi.org/10.31857/S0367292123601030
- Postupaev V. V., Batkin V. I., Burdakov A. V., Burmasov V. S., Ivanov I. A., Kuklin K. N., Mekler K. I., Rovenskikh A. F., and Sidorov E. N., Plasma Phys. Control. Fusion 62, 025008 (2020). https://doi.org/10.1088/1361-6587/ab53c2
- Sidorov E. N., Batkin V. I., Burdakov A. V., Ivanov I. A., Kuklin K. N., Mekler K. I., Nikishin A. V., Postupaev V. V., Rovenskikh A. F., J. Instrum. 16, T11006 (2021). https://doi.org/10.1088/1748-0221/16/11/T11006
- Laframboise J. G., Theory of Spherical and Cylindrical Langmuir Probes in a Collisionless, Maxwellian Plasma at Rest. Ph. D. Thesis (Toronto Univ. Downsview (Ontario) Inst. for Aerospace Studies. University of Toronto, Toronto, Canada, 1966).
- Деревянкин Г. Е., Дудников В. Г., Журавлев П. А., ПТЭ 18 (No. 5), 168 (1975).
- Chen F. F., Langmuir probe diagnostics, in Proc. Mini-Course on Plasma Diagnostics, IEEE ICOPS meeting (June 5, 2003, Jeju, Korea), p. 20—111.
- Beklemishev A. D., Bagryansky P. A., Chaschin M. S., Soldatkina E. I., Fusion Sci. Technol. 57, 351 (2010). https://doi.org/10.13182/FST10-A9497
Supplementary files
