MOLECULAR DYNAMICS SIMULATION OF MOLTEN NiF2: STRUCTURE AND TRANSPORT PROPERTIES


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Computer modeling of molten nickel fluoride was carried out using classical molecular dynamics in the temperature range 1750–1900 K. The density of crystalline NiF2 with a relative error of less than 1% verified the parameters of the pair potential obtained in the framework of the quantum-chemical approximation. The calculated radial distribution functions and coordination numbers for the Ni–F pair indicate a distorted octahedral environment of the nickel cation in the melt. In this case, a slight decrease in the nearest cation-anion distance was found in comparison with solid nickel fluoride. It is shown that the curve of the radial distribution function for the fluorine-fluorine pair near the main peak splits into two maxima. The position of the first peak at 2.67 Å is characterized by a coordination number of 5.1 and describes neighboring anions in a distorted octahedron. Whereas, the second maximum can be associated with fluorine anions located along the F–Ni–F line with a peak position at 3.83 Å, which indicates a decrease in a similar distance compared to the crystal. The coefficients of self-diffusion of ions and the viscosity of the NiF2 melt at different temperatures were calculated.

作者简介

М. Kobelev

Institute of High-Temperature Electrochemistry Ural Branch of RAS

编辑信件的主要联系方式.
Email: m.kobelev@ihte.uran.ru
Russia, Yekaterinburg

D. Zakiryanov

Institute of High-Temperature Electrochemistry Ural Branch of RAS

Email: m.kobelev@ihte.uran.ru
Russia, Yekaterinburg

V. Tukachev

Institute of High-Temperature Electrochemistry Ural Branch of RAS

Email: m.kobelev@ihte.uran.ru
Russia, Yekaterinburg

参考

  1. Jiang D., Zhang D., Li X., Wang S., Wang C., Qin H., Guo Y., Tian W., Su G.H., Qiu S // Renew. Sustain. Energy Rev. 2022. 161. P. 112345. https://doi.org/10.1016/j.rser.2022.112345
  2. Karfidov E., Nikitina E., Erzhenkov M., Seliverstov K., Chernenky P., Mullabaev A., Tsvetov V., Mushnikov P., Karimov K., Molchanovs N., Kuznetsova A. // Materials. 2022. 15. P. 761. https://doi.org/10.3390/ma15030761
  3. Ocadiz-Flores J.A., Capelli E., Raison P.E., Konings R.J.M., Smith A.L. // J. Chem. Thermodyn. 2018. 121. P. 17–26. https://doi.org/10.1016/j.jct.2018.01.023
  4. Wood N.D., Howe R.A. // J. Phys. C: Solid State Phys. 1988. 21. P. 3177–3190. https://doi.org/10.1088/0022-3719/21/17/009
  5. Tasseven C., Alcaraz O., Trullàs J., Silbert M. // High Temp. Mater. Process. 1998. 17. P. 163–176. https://doi.org/10.1515/HTMP.1998.17.3.163
  6. Zakiryanov D., Kobelev M., Tkachev N. // Russian Metallurgy. 2022. № 8. P. 972–977. https://doi.org/10.1134/S0036029522080250
  7. Zakiryanov D., Kobelev M., Tkachev N. // Fluid Phase Equil. 2020. 506. P. 112369. https://doi.org/10.1016/j.fluid.2019.112369
  8. CRC Handbook of Chemistry and Physics, 95th Edition, ed. Haynes, William M, CRC Press, 2014.
  9. Stout J.W., Reed S.A. // J. Am. Chem. Soc. 1954. 76. P. 5279–5281. https://doi.org/10.1021/ja01650a005
  10. Young J.P., Smith G.P. // J. Chem. Phys. 1964. 40. P. 913–914. http://dx.doi.org/10.1063/1.1725233
  11. Zakiryanov D. // Comput. Theor. Chem. 2022. 1210. P. 113646. https://doi.org/10.1016/j.comptc.2022.113646

补充文件

附件文件
动作
1. JATS XML
2.

下载 (25KB)
3.

下载 (962KB)
4.

下载 (98KB)
5.

下载 (106KB)
6.

下载 (26KB)
7.

下载 (24KB)

版权所有 © М.А. Кобелев, Д.О. Закирьянов, В.А. Тукачев, 2023