Современные методы флуоресцентной наноскопии в биологии
- Авторы: Соловьева Д.О.1, Алтунина А.В.1,2, Третьяк М.В.1, Мочалов К.Е.1, Олейников В.А.1,3
-
Учреждения:
- ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
- Московский физико-технический институт (национальный исследовательский университет)
- Национальный исследовательский ядерный университет “МИФИ”
- Выпуск: Том 50, № 4 (2024)
- Страницы: 462-484
- Раздел: Статьи
- URL: https://archivog.com/0132-3423/article/view/670841
- DOI: https://doi.org/10.31857/S0132342324040077
- EDN: https://elibrary.ru/MWYVNA
- ID: 670841
Цитировать
Аннотация
За последние десятилетия оптическая микроскопия претерпела значительные изменения благодаря преодолению дифракционного предела оптического разрешения и развитию методов визуализации с высоким разрешением, которые объединили под термином флуоресцентная наноскопия. Такие подходы позволяют исследователям наблюдать биологические структуры и процессы с наномасштабным уровнем детализации, раскрывая их ранее скрытые особенности и помогая отвечать на фундаментальные биологические вопросы. Среди передовых методов флуоресцентной наноскопии можно выделить STED (Stimulated Emission Depletion Microscopy), STORM (STochastic Optical Reconstruction Microscopy), PALM (Photo-activated Localization Microscopy), TIRF (Total Internal Reflection Fluorescence), SIM (Structured Illumination Microscopy), MINFLUX (Minimal Photon Fluxes), PAINT (Points Accumulation for Imaging in Nanoscale Topography) и RESOLFT (REversible Saturable Optical Fluorescence Transitions) и др. Большинство указанных методов позволяют получать объемные (3D) изображения исследуемых объектов. В данном обзоре рассмотрены принципы этих методов, их достоинства и недостатки, а также применение в биологических исследованиях.
Полный текст

Об авторах
Д. О. Соловьева
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
Автор, ответственный за переписку.
Email: d.solovieva@mail.ru
Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10
А. В. Алтунина
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН; Московский физико-технический институт (национальный исследовательский университет)
Email: d.solovieva@mail.ru
Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10; 141701 Долгопрудный, Институтский переулок, 9
М. В. Третьяк
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
Email: d.solovieva@mail.ru
Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10
К. Е. Мочалов
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
Email: d.solovieva@mail.ru
Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10
В. А. Олейников
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН; Национальный исследовательский ядерный университет “МИФИ”
Email: d.solovieva@mail.ru
Россия, 117997 Москва, ул. Миклухо-Маклая, 16/10; 115409 Москва, Каширское ш., 31
Список литературы
- Abbe E. // Archiv für mikroskopische Anatomie. 1873. V. 9. P. 413–468. https://doi.org/10.1007/BF02956173
- Minsky M. // Scanning. 1988. V. 10. P. 128–138. https://doi.org/10.1002/sca.4950100403
- Kaiser W., Garrett C. // Phys. Rev. Lett. 1961. V. 7. P. 229–231. https://doi.org/10.1103/PhysRevLett.7.229
- Hell S.W., Stelzer E.H.K., Lindek S., Cremer C. // Opt. Lett. 1994. V. 19. P. 222–224. https://doi.org/10.1364/OL.19.000222
- Bahlmann K., Jakobs S., Hell S.W. // Ultramicroscopy. 2001. V. 87. P. 155–164. https://doi.org/10.1016/S0304-3991(00)00092-9
- Khater I.M., Nabi I.R., Hamarneh G. // Patterns. 2020. V. 1. P. 100038. https://doi.org/10.1016/j.patter.2020.100038
- Gong J., Jin Z., Chen H., He J., Zhang Y., Yang X. // Adv. Drug Deliv. Rev. 2023. V. 196. P. 114791. https://doi.org/10.1016/j.addr.2023.114791
- Werner C., Sauer M., Geis C. // Chem. Rev. 2021. V. 121. P. 11971–12015. https://doi.org/10.1021/acs.chemrev.0c01174
- Jacquemet G., Carisey A.F., Hamidi H., Henriques R., Leterrier C. // J. Cell Sci. 2020. V. 133. P. jcs240713. https://doi.org/10.1242/jcs.240713
- Vicidomini G., Bianchini P., Diaspro A. // Nat. Methods. 2018. V. 15. P. 173–182. https://doi.org/10.1038/nmeth.4593
- Hell S.W., Wichmann J. // Opt. Lett. 1994. V. 19. P. 780–782. https://doi.org/10.1364/ol.19.000780
- Hell S.W., Kroug M. // Appl. Phys. B. 1995. V. 60. P. 495–497. https://doi.org/10.1007/BF01081333
- Mochalov K.E., Chistyakov A.A., Solovyeva D.O., Mezin A.V., Oleinikov V.A., Vaskan I.S., Molinari M., Agapov I.I., Nabiev I., Efimov A.E. // Ultramicroscopy. 2017. V. 182. P. 118–123. https://doi.org/10.1016/j.ultramic.2017.06.022
- Heine J., Wurm C.A., Keller-Findeisen J., Schönle A., Harke B., Reuss M., Winter F.R., Donnert G. // Rev. Sci. Instrum. 2018. V. 89. P. 053701. https://doi.org/10.1063/1.5020249
- Blom H., Widengren J. // Curr. Opin. Chem. Biol. 2014. V. 20. P. 127–133. https://doi.org/10.1016/j.cbpa.2014.06.004
- Berning S., Willig K.I., Steffens H., Dibaj P., Hell S.W. // Science. 2012. V. 335. P. 551–552. https://doi.org/10.1126/science.1215369
- Masch J.-M., Steffens H., Fischer J., Engelhardt J., Hubrich J., Keller-Findeisen J., D’Este E., Urban N.T., Grant S.G.N., Sahl S.J., Kamin D., Hell S.W. // Proc. Natl. Acad. Sci. USA. 2018. V. 115. P. E8047–E8056. https://doi.org/10.1073/pnas.1807104115
- Pfeiffer T., Poll S., Bancelin S., Angibaud J., Inavalli V.K., Keppler K., Mittag M., Fuhrmann M., Nägerl U.V. // Elife. 2018. V. 7. P. 1–17. https://doi.org/10.7554/eLife.34700
- Steffens H., Wegner W., Willig K.I. // Methods. 2020. V. 174. P. 42–48. https://doi.org/10.1016/j.ymeth.2019.05.020
- Calovi S., Soria F.N., Tønnesen J. // Neurobiol. Dis. 2021. V. 156. P. 105420. https://doi.org/10.1016/j.nbd.2021.105420
- Katsube S., Koganezawa N., Hanamura K., Cuthill K.J., Tarabykin V., Ambrozkiewicz M.C., Kawabe H. // Neurosci. Lett. 2023. V. 797. P. 137059. https://doi.org/10.1016/j.neulet.2023.137059
- Scharrig E., Sanmillan M.L., Giraudo C.G. // Methods Cell Biol. 2023. https://doi.org/10.1016/bs.mcb.2023.01.018
- Carravilla P., Dasgupta A., Zhurgenbayeva G., Danylchuk D.I., Klymchenko A.S., Sezgin E., Eggeling C. // Biophys. Rep. 2021. V. 1. P. 100023. https://doi.org/10.1016/j.bpr.2021.100023
- Spahn C., Grimm J.B., Lavis L.D., Lampe M., Heilemann M. // Nano Lett. 2019. V. 19. P. 500–505. https://doi.org/10.1021/acs.nanolett.8b04385
- Sauer M., Heilemann M. // Chem. Rev. 2017. V. 117. P. 7478–7509. https://doi.org/10.1021/acs.chemrev.6b00667
- Keller J., Schönle A., Hell S.W. // Opt. Express. 2007. V. 15. P. 3361–3371. https://doi.org/10.1364/oe.15.003361
- Rittweger E., Rankin B.R., Westphal V., Hell S.W. // Chem. Phys. Lett. 2007. V. 442. P. 483–487. https://doi.org/10.1016/j.cplett.2007.06.017
- Sharma R., Singh M., Sharma R. // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020. V. 231. P. 117715. https://doi.org/10.1016/j.saa.2019.117715
- Zhang P., Goodwin P.M., Werner J.H. // Opt. Express. 2014. V. 22. P. 12398–12409. https://doi.org/10.1364/OE.22.012398
- Yu W., Ji1 Z., Dong D., Yang X., Xiao Y., Gong Q., Xi P., Shi K. // Laser Photonics Rev. 2016. V. 10. P. 147–152. https://doi.org/10.1002/lpor.201500151
- Frawley A.T., Wycisk V., Xiong Y., Galiani S., Sezgin E., Urbančič I., Jentzsch A.V., Leslie K.G., Eggeling C., Anderson H.L. // Chem. Sci. 2020. V. 11. P. 8955–8960. https://doi.org/10.1039/D0SC02447C
- Damenti M., Coceano G., Pennacchietti F., Bodén A., Testa I. // Neurobiol. Dis. 2021. V. 155. P. 105361. https://doi.org/10.1016/j.nbd.2021.105361
- Sahl, S.J., Hell, S.W. // In: High Resolution Imaging in Microscopy and Ophthalmology / Eds. Bille J. Cham: Springer, 2019. P. 3–32. https://doi.org/10.1007/978-3-030-16638-0_1
- Boden A., Pennacchietti F., Coceano G., Damenti M., Ratz M., Testa I. // Nat. Biotechnol. 2021. V. 39. P. 609–618. https://doi.org/10.1038/s41587-020-00779-2
- Willig K.I. // iScience. 2022. V. 25. P. 104961. https://doi.org/10.1016/j.isci.2022.104961
- Rust M.J., Bates M., Zhuang X.W. // Nat. Methods. 2006. V. 3. P. 793–795. https://doi.org/10.1038/nmeth929
- Hess S.T., Girirajan T.P.K., Mason M.D. // Biophys. J. 2006. V. 91. V. 4258–4272. https://doi.org/10.1529/biophysj.106.091116
- Kikuchi K., Adair L.D., Lin J., New E.J., Kaur A. // Angew. Chem. Int. Ed. Engl. 2023. V. 62. P. e202204745. https://doi.org/10.1002/anie.202204745
- Li H., Vaughan J.C. // Chem. Rev. 2018. V. 118. P. 9412–9454. https://doi.org/10.1021/acs.chemrev.7b00767
- Huang B., Wang W., Bates M., Zhuang X. // Science. 2008. V. 319. P. 810–813. https://doi.org/10.1126/science.1153529
- Albrecht N.E., Jiang D., Akhanov V., Hobson R., Speer C.M., Robichaux M.A., Samuel M.A. // Cell Rep. Methods. 2022. V. 2. P. 100253. https://doi.org/10.1016/j.crmeth.2022.100253
- Hu F., Zhu D., Dong H., Zhang P., Xing F., Li W., Yan R., Zhou J., Xu K., Pan L., Xu J. // iScience. 2022. V. 25. P. 105514. https://doi.org/10.1016/j.isci.2022.105514
- Kim D., Deerinck T.J., Sigal Y.M., Babcock H.P., Ellisman M.H., Zhuang X. // PLoS One. 2015. V. 10. P. e0124581. https://doi.org/10.1371/journal.pone.0124581
- Betzig E., Patterson G.H., Sougrat R., Lindwasser O.W., Olenych S., Bonifacino J.S., Davidson M.W., Lippincott-Schwartz J., Hess H.F. // Science. 2006. V. 313. P. 1642–1645. https://doi.org/10.1126/science.1127344
- Shtengel G., Galbraith J.A., Galbraith C.G., Lippincott-Schwartz J., Gillette J.M., Manley S., Sougrat R., Waterman C.M., Kanchanawong P., Davidson M.W., Fetter R.D., Hess H.F. // PNAS. 2009. V. 106. P. 3125–3130. https://doi.org/10.1073/pnas.0813131106
- Shtengel G., Wang Y., Zhang Z., Goh W.I., Hess H.F., Kanchanawong P. // Methods Cell Biol. 2014. V. 123. P. 273–294. https://doi.org/10.1016/B978-0-12-420138-5.00015-X
- Baddeley D., Bewersdorf J. // Annu. Rev. Biochem. 2018. V. 87. P. 965–989. https://doi.org/10.1146/annurev-biochem-060815-014801
- Lemcke H., Skorska A., Lang C.I., Johann L., David R. // Int. J. Mol. Sci. 2020. V. 21. P. 2819. https://doi.org/10.3390/ijms21082819
- Saha I., Saffarian S. // Biophys. J. 2020. V. 119. P. 581–592. https://doi.org/10.1016/j.bpj.2020.06.023
- Chojnacki J., Eggeling C. // Retrovirology. 2018. V. 15. P. 41. https://doi.org/10.1186/s12977-018-0424-3
- Herron J.C., Hu S., Watanabe T., Nogueira A.T., Liu B., Kern M.E., Aaron J., Taylor A., Pablo M., Chew T.L., Elston T.C., Hahn K.M. // Nat. Commun. 2022. V. 13. P. 4363. https://doi.org/10.1038/s41467-022-32038-0
- Parteka-Tojek Z., Zhu J.J., Lee B., Jodkowska K., Wang P., Aaron J., Chew T.L., Banecki K., Plewczynski D., Ruan Y. // Sci. Rep. 2022. V. 12. P. 8582. https://doi.org/10.1038/s41598-022-12568-9
- Trzaskoma P., Ruszczycki B., Lee B., Pels K.K., Krawczyk K., Bokota G., Szczepankiewicz A.A., Aaron J., Walczak A., Śliwińska M.A., Magalska A., Kadlof M., Wolny A., Parteka Z., Arabasz S., KissArabasz M., Plewczyński D., Ruan Y., Wilczyński G.M. // Nat. Commun. 2020. V. 11. P. 2120. https://doi.org/10.1038/s41467-020-15987-2
- Sharonov A., Hochstrasser R.M. // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 18911–18916. https://doi.org/10.1073/pnas.0609643104
- Schnitzbauer J., Strauss M., Schlichthaerle T., Schueder F., Jungmann R. // Nat. Protoc. 2017. V. 12. P. 1198–1228. https://doi.org/10.1038/nprot.2017.024
- Jungmann R., Avendano M.S., Woehrstein J.B., Dai M., Shih W.M., Yin P. // Nat. Methods. 2014. V. 11. P. 313–318. https://doi.org/10.1038/nmeth.2835
- Niederauer C., Nguyen C., Wang-Henderson M., Stein J., Strauss S., Cumberworth A., Stehr F., Jungmann R., Schwille P., Ganzinger K.A. // Nat. Commun. 2023. V. 14. P. 4345. https://doi.org/10.1038/s41467-023-40065-8
- Brockman J.M., Su H., Blanchard A.T., Duan Y., Meyer T., Quach M.E., Glazier R., Bazrafshan A., Bender R.L., Kellner A.V., Ogasawara H., Ma R., Schueder F., Petrich B.G., Jungmann R., Li R., Mattheyses A.L., Ke Y., Salaita K. // Nat. Methods. 2020. V. 17. P. 1018–1024. https://doi.org/10.1038/s41592-020-0929-2
- Tholen M.M.E., Tas R.P., Wang Y., Albertazzi L. // Chem. Commun. (Camb). 2023. V. 59. P. 8332– 8342. https://doi.org/10.1039/d3cc00757j
- Chang Y., Kim D.H., Zhou K., Jeong M.G., Park S., Kwon Y., Hong T.M., Noh J., Ryu S.H. // Exp. Mol. Med. 2021. V. 53. P. 384–392. https://doi.org/10.1038/s12276-021-00572-4
- Riera R., Hogervorst T.P., Doelman W., Ni Y., Pujals S., Bolli E., Codée J.D.C., van Kasteren S.I., Albertazzi L. // Nat. Chem. Biol. 2021. V. 17. P. 1281–1288. https://doi.org/10.1038/s41589-021-00896-2
- Farrell M.V., Nunez A.C., Yang Z., Pérez-Ferreros P., Gaus K., Goyette J. // Sci. Signal. 2022. V. 15. P. eabg9782. https://doi.org/10.1126/scisignal.abg9782
- Oi C., Gidden Z., Holyoake L., Kantelberg O., Mochrie S., Horrocks M.H., Regan L. // Commun. Biol. 2020. V. 3. P. 458. https://doi.org/10.1038/s42003-020-01188-6
- Gwosch K.C., Pape J.K., Balzarotti F., Hoess P., Ellenberg J., Ries J., Hell S.W. // Nat. Methods. 2020. V. 17. P. 217–224. https://doi.org/10.1038/s41592-019-0688-0
- Balzarotti F., Eilers Y., Gwosch K.C., Gynnå A.H., Westphal V., Stefani F.D., Elf J., Hell S.W. // Science. 2017. V. 355. P. 606–612. https://doi.org/10.1126/science.aak9913
- Prakash K., Curd A.P. // Nat. Methods. 2023. V. 20. P. 48–51. https://doi.org/10.1038/s41592-022-01694-x
- Gwosch K.C., Balzarotti F., Pape J.K., Hoess P., Ellenberg J., Ries J., Matti U., Schmidt R., Sahl S.J., Hell S.W. // Nat. Methods. 2023. V. 20. P. 52–54. https://doi.org/10.1038/s41592-022-01695-w
- Wolff J.O., Scheiderer L., Engelhardt T., Engelhardt J., Matthias J., Hell S.W. // Science. 2023. V. 379. P. 1004–1010. https://doi.org/10.1126/science.ade2650
- Deguchi T., Iwanski M.K., Schentarra E.M., Heidebrecht C., Schmidt L., Heck J., Weihs T., Schnorrenberg S., Hoess P., Liu S., Chevyreva V., Noh K.M., Kapitein L.C., Ries J. // Science. 2023. V. 379. P. 1010–1015. https://doi.org/10.1126/science.ade2676
- Ostersehlt L.M., Jans D.C., Wittek A., KellerFindeisen J., Inamdar K., Sahl S.J., Hell S.W., Jakobs S. // Nat. Methods. 2022. V. 19. P. 1072–1075. https://doi.org/10.1038/s41592-022-01577-1
- Mulhall E.M., Gharpure A., Lee R.M., Dubin A.E., Aaron J.S., Marshall K.L., Spencer K.R., Reiche M.A., Henderson S.C., Chew T.L., Patapoutian A. // Nature. 2023. V. 620. P. 1117–1125. https://doi.org/10.1038/s41586-023-06427-4.
- Carsten A., Rudolph M., Weihs T., Schmidt R., Jansen I., Wurm C.A., Diepold A., Failla A.V., Wolters M., Aepfelbacher M. // Methods Appl. Fluoresc. 2022. V. 11. https://doi.org/10.1088/2050-6120/aca880
- Pape J.K., Stephan T., Balzarotti F., Büchner R., Lange F., Riedel D., Jakobs S., Hell S.W. // Proc. Natl. Acad. Sci. USA. 2020. V. 117. P. 20607–20614. https://doi.org/10.1073/pnas.2009364117
- Gustafsson M.G.L. // J. Microsc. 2000. V. 198. P. 82–87. https://doi.org/10.1046/j.1365-2818.2000.00710.x
- Gustafsson M.G.L., Shao L., Carlton P.M., Wang C.J.R., Golubovskaya I.N., Cande W.Z, Agard D.A., Sedat J.W. // Biophys. J. 2008. V. 94. P. 4957–4970. https://doi.org/10.1529/biophysj.107.120345
- Manton J.D. // Philos. Trans. A Math. Phys. Eng. Sci. 2022. V. 380. P. 20210109. https://doi.org/10.1098/rsta.2021.0109
- Zhao T., Wang Z., Chen T., Lei M., Yao B., Bianco P.R. // Front. Phys. 2021. V. 9. P. 672555. https://doi.org/10.3389/fphy.2021.672555
- Chen X., Zhong S., Hou Y., Cao R., Wang W., Li D., Dai Q., Kim D., Xi P. // Light Sci. Appl. 2023. V. 12. P. 172. https://doi.org/10.1038/s41377-023-01204-4
- Wang M., Chen J., Wang L., Zheng X., Zhou J., Zeng Y., Qu J., Shao Y., Gao B.Z. // Chemosensors. 2021. V. 9. P. 364. https://doi.org/10.3390/chemosensors9120364
- Hamel V., Guichard P., Fournier M., Guiet R., Fluckiger I., Seitz A., Gonczy P. // Biomed. Opt. Express. 2014. V. 5. P. 3326–3336. https://doi.org/10.1364/BOE.5.003326
- Dake F. // Opt. Rev. 2016. V. 23. P. 587–595. https://doi.org/10.1007/s10043-016-0234-6
- Xue Y., So P.T.C. // Opt. Express. 2018. V. 26. P. 20920– 20928. https://doi.org/10.1364/OE.26.020920
- Fiolka R., Beck M., Stemmer A. // Opt. Lett. 2008. V. 33. P. 1629–1631. https://doi.org/10.1364/OL.33.001629
- Roth J., Mehl J., Rohrbach A. // Biomed. Opt. Express. 2020. V. 11. P. 4008–4026. https://doi.org/10.1364/BOE.391561
- Hinsdale T.A., Stallinga S., Rieger B. // Biomed. Opt. Express. 2021. V. 12. P. 1181–1194. https://doi.org/10.1364/BOE.416546
- Heintzmann R., Huser T. // Chem. Rev. 2017. V. 117. P. 13890–13908. https://doi.org/10.1021/acs.chemrev.7b00218
- Ward E.N., Hecker L., Christensen C.N., Lamb J.R., Lu M., Mascheroni L., Chung C.W., Wang A., Rowlands C.J., Schierle G.S.K., Kaminski C.F. // Nat. Commun. 2022. V. 13. P. 7836. https://doi.org/10.1038/s41467-022-35307-0
- Mennella V. // In: Encyclopedia of Cell Biology (Second Edition) / Eds. Ralph A., Hart B.G.W., Stahl P.D. Academic Press, 2023. P. 105–121. https://doi.org/10.1016/B978-0-12-821618-7.00116-4
- Hong S., Wilton D.K., Stevens B., Richardson D.S. // Methods Mol. Biol. 2017. V. 1538. P. 155–167. https://doi.org/10.1007/978-1-4939-6688-2_12
- Sulkowski M.J., Han T.H., Ott C., Wang Q., Verheyen E.M., Lippincott-Schwartz J., Serpe M. // PLoS Genet. 2016. V. 12. P. e1005810. https://doi.org/10.1371/journal.pgen.1005810
- Badawi Y., Nishimune H. // Neurosci. Lett. 2020. V. 715. P. 134644. https://doi.org/10.1016/j.neulet.2019.134644
- Miao L., Yan C., Chen Y., Zhou W., Zhou X., Qiao Q., Xu Z. // Cell Chem. Biol. 2023. V. 30. P. 248–260. https://doi.org/10.1016/j.chembiol.2023.02.001
- Mudry E., Belkebir K., Girard J., Savatier J., Le Moal E., Nicoletti C., Allain M., Sentenac A. // Nat. Photon. 2012. V. 6. P. 312–315. https://doi.org/10.1038/nphoton.2012.83
- Mangeat T., Labouesse S., Allain M., Negash A., Martin E., Guénolé A., Poincloux R., Estibal C., Bouissou A., Cantaloube S., Vega E., Li T., Rouvière C., Allart S., Keller D., Debarnot V., Wang X.B., Michaux G., Pinot M., Le Borgne R., Tournier S., Suzanne M., Idier J., Sentenac A. // Cell Rep. Methods. 2021. V. 1. P. 100009. https://doi.org/10.1016/j.crmeth.2021.100009
- Labouesse S., Idier J., Sentenac A., Mangeat T., Allain M. // Random Illumination Microscopy from Variance Images / 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, 2021. P. 785–789. https://doi.org/10.23919/Eusipco47968.2020.9287651
- Liu P. // Appl. Opt. 2022. V. 61. P. 2910–2914. https://doi.org/10.1364/AO.452709
- Affannoukoué K., Labouesse S., Maire G., Gallais L., Savatier J., Allain M., Rasedujjaman M., Legoff L., Idier J., Poincloux R., Pelletier F., Leterrier C., Mangeat T., Sentenac A. // Optica. 2023. V. 10. P. 1009–1017. https://doi.org/10.1364/OPTICA.487003
- Axelrod D. // Traffic. 2001. V. 2. P. 764–774. https://doi.org/10.1034/j.1600-0854.2001.21104.x
- Janco M., Dedova I., Bryce N.S., Hardeman E.C., Gunning P.W. // Biophys. Rev. 2020. V. 12. P. 879– 885. https://doi.org/10.1007/s12551-020-00720-6
- Shen H., Huang E., Das T., Xu H., Ellisman M., Liu Z. // Opt. Express. 2014. V. 22. P. 10728–10734. https://doi.org/10.1364/OE.22.010728
- Fish K.N. // Curr. Protoc. Cytom. 2009. V. 12. P. Unit12.18. https://doi.org/10.1002/0471142956.cy1218s50
- McCluskey K., Dekker N.H. // Opt. Commun. 2023. V. 538. P. 129474. https://doi.org/10.1016/j.optcom.2023.129474
- Fan D., Cnossen J., Hung S.-T., Kromm D., Dekker N.H., Verbiest G.J., Smith G.S. // Opt. Commun. 2023. V. 542. P. 129548. https://doi.org/10.1016/j.optcom.2023.129548
- Soubies E., Radwanska A., Grall D., Blanc-Féraud L., Van Obberghen-Schilling E., Schaub S. // Sci. Rep. 2019. V. 9. P. 1926. https://doi.org/10.1038/s41598-018-36119-3
- Jung Y., Riven I., Feigelson S.W., Kartvelishvily E., Tohya K., Miyasaka M., Alon R., Haran G. // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. E5916–E5924. https://doi.org/10.1073/pnas.1605399113
- Szalai A.M., Siarry B., Lukin J., Williamson D.J., Unsain N., Cáceres A., Pilo-Pais M., Acuna G., Refojo D., Owen D.M., Simoncelli S., Stefani F.D. // Nat. Commun. 2021. V. 12. P. 517. https://doi.org/10.1038/s41467-020-20863-0
- Young L.J., Ströhl F., Kaminski C.F.A. // J. Vis. Exp. 2016. V. 111. P. e53988. https://doi.org/10.3791/53988
- Opstad I.S., Ströhl F., Fantham M., Hockings C., Vanderpoorten O., van Tartwijk F.W., Lin J.Q., Tinguely J.-C., Dullo F.T., Kaminski-Schierle G.S., Ahluwalia B.S., Kaminski C.F. // J. Biophotonics. 2020. V. 13. P. e201960222. https://doi.org/10.1002/jbio.201960222
- Villegas-Hernández L.E., Dubey V., Nystad M., Tinguely J.-C., Coucheron D.A., Dullo F.T., Priyadarshi A., Acuña S., Ahmad A., Mateos J.M., Barmettler G., Ziegler U., Birgisdottir Å.B., Karlsson Hovd A.-M., Fenton K.A., Acharya G., Agarwal K., Ahluwalia B.S. // Light Sci. Appl. 2022. V. 11. P. 43. https://doi.org/10.1038/s41377-022-00731-w
Дополнительные файлы
