Modern Methods of Fluorescence Nanoscopy in Biology
- Authors: Solovyeva D.O.1, Altunina A.V.1,2, Tretyak M.V.1, Mochalov K.E.1, Oleinikov V.A.1,3
-
Affiliations:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
- Moscow Institute of Physics and Technology (National Research University)
- National Research Nuclear University “MEPhI”
- Issue: Vol 50, No 4 (2024)
- Pages: 462-484
- Section: Articles
- URL: https://archivog.com/0132-3423/article/view/670841
- DOI: https://doi.org/10.31857/S0132342324040077
- EDN: https://elibrary.ru/MWYVNA
- ID: 670841
Cite item
Abstract
Optical microscopy has undergone significant changes in recent decades due to the breaking of the diffraction limit of optical resolution and the development of high-resolution imaging techniques, which are collectively known as fluorescence nanoscopy. These techniques allow researchers to observe biological structures and processes at a nanoscale level of detail, revealing previously hidden features and aiding in answering fundamental biological questions. Among the advanced methods of fluorescent nanoscopy are: STED (Stimulated Emission Depletion Microscopy), STORM (STochastic Optical Reconstruction Microscopy), PALM (Photo-activated Localization Microscopy), TIRF (Total Internal Reflection Fluorescence), SIM (Structured Illumination Microscopy), MINFLUX (Minimal Photon Fluxes), PAINT (Points Accumulation for Imaging in Nanoscale Topography) и RESOLFT (REversible Saturable Optical Fluorescence Transitions) and others. In addition, most of these methods make it possible to obtain volumetric (3D) images of the objects under study. In this review, we will look at the principles of these methods, their advantages and disadvantages, and their application in biological researches.
Full Text

About the authors
D. O. Solovyeva
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
Author for correspondence.
Email: d.solovieva@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997
A. V. Altunina
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; Moscow Institute of Physics and Technology (National Research University)
Email: d.solovieva@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Institutskiy per. 9, Dolgoprudny, 141701
M. V. Tretyak
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
Email: d.solovieva@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997
K. E. Mochalov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry
Email: d.solovieva@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997
V. A. Oleinikov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry; National Research Nuclear University “MEPhI”
Email: d.solovieva@mail.ru
Russian Federation, ul. Miklukho-Maklaya 16/10, Moscow, 117997; Kashirskoye sh. 31, Moscow, 115409
References
- Abbe E. // Archiv für mikroskopische Anatomie. 1873. V. 9. P. 413–468. https://doi.org/10.1007/BF02956173
- Minsky M. // Scanning. 1988. V. 10. P. 128–138. https://doi.org/10.1002/sca.4950100403
- Kaiser W., Garrett C. // Phys. Rev. Lett. 1961. V. 7. P. 229–231. https://doi.org/10.1103/PhysRevLett.7.229
- Hell S.W., Stelzer E.H.K., Lindek S., Cremer C. // Opt. Lett. 1994. V. 19. P. 222–224. https://doi.org/10.1364/OL.19.000222
- Bahlmann K., Jakobs S., Hell S.W. // Ultramicroscopy. 2001. V. 87. P. 155–164. https://doi.org/10.1016/S0304-3991(00)00092-9
- Khater I.M., Nabi I.R., Hamarneh G. // Patterns. 2020. V. 1. P. 100038. https://doi.org/10.1016/j.patter.2020.100038
- Gong J., Jin Z., Chen H., He J., Zhang Y., Yang X. // Adv. Drug Deliv. Rev. 2023. V. 196. P. 114791. https://doi.org/10.1016/j.addr.2023.114791
- Werner C., Sauer M., Geis C. // Chem. Rev. 2021. V. 121. P. 11971–12015. https://doi.org/10.1021/acs.chemrev.0c01174
- Jacquemet G., Carisey A.F., Hamidi H., Henriques R., Leterrier C. // J. Cell Sci. 2020. V. 133. P. jcs240713. https://doi.org/10.1242/jcs.240713
- Vicidomini G., Bianchini P., Diaspro A. // Nat. Methods. 2018. V. 15. P. 173–182. https://doi.org/10.1038/nmeth.4593
- Hell S.W., Wichmann J. // Opt. Lett. 1994. V. 19. P. 780–782. https://doi.org/10.1364/ol.19.000780
- Hell S.W., Kroug M. // Appl. Phys. B. 1995. V. 60. P. 495–497. https://doi.org/10.1007/BF01081333
- Mochalov K.E., Chistyakov A.A., Solovyeva D.O., Mezin A.V., Oleinikov V.A., Vaskan I.S., Molinari M., Agapov I.I., Nabiev I., Efimov A.E. // Ultramicroscopy. 2017. V. 182. P. 118–123. https://doi.org/10.1016/j.ultramic.2017.06.022
- Heine J., Wurm C.A., Keller-Findeisen J., Schönle A., Harke B., Reuss M., Winter F.R., Donnert G. // Rev. Sci. Instrum. 2018. V. 89. P. 053701. https://doi.org/10.1063/1.5020249
- Blom H., Widengren J. // Curr. Opin. Chem. Biol. 2014. V. 20. P. 127–133. https://doi.org/10.1016/j.cbpa.2014.06.004
- Berning S., Willig K.I., Steffens H., Dibaj P., Hell S.W. // Science. 2012. V. 335. P. 551–552. https://doi.org/10.1126/science.1215369
- Masch J.-M., Steffens H., Fischer J., Engelhardt J., Hubrich J., Keller-Findeisen J., D’Este E., Urban N.T., Grant S.G.N., Sahl S.J., Kamin D., Hell S.W. // Proc. Natl. Acad. Sci. USA. 2018. V. 115. P. E8047–E8056. https://doi.org/10.1073/pnas.1807104115
- Pfeiffer T., Poll S., Bancelin S., Angibaud J., Inavalli V.K., Keppler K., Mittag M., Fuhrmann M., Nägerl U.V. // Elife. 2018. V. 7. P. 1–17. https://doi.org/10.7554/eLife.34700
- Steffens H., Wegner W., Willig K.I. // Methods. 2020. V. 174. P. 42–48. https://doi.org/10.1016/j.ymeth.2019.05.020
- Calovi S., Soria F.N., Tønnesen J. // Neurobiol. Dis. 2021. V. 156. P. 105420. https://doi.org/10.1016/j.nbd.2021.105420
- Katsube S., Koganezawa N., Hanamura K., Cuthill K.J., Tarabykin V., Ambrozkiewicz M.C., Kawabe H. // Neurosci. Lett. 2023. V. 797. P. 137059. https://doi.org/10.1016/j.neulet.2023.137059
- Scharrig E., Sanmillan M.L., Giraudo C.G. // Methods Cell Biol. 2023. https://doi.org/10.1016/bs.mcb.2023.01.018
- Carravilla P., Dasgupta A., Zhurgenbayeva G., Danylchuk D.I., Klymchenko A.S., Sezgin E., Eggeling C. // Biophys. Rep. 2021. V. 1. P. 100023. https://doi.org/10.1016/j.bpr.2021.100023
- Spahn C., Grimm J.B., Lavis L.D., Lampe M., Heilemann M. // Nano Lett. 2019. V. 19. P. 500–505. https://doi.org/10.1021/acs.nanolett.8b04385
- Sauer M., Heilemann M. // Chem. Rev. 2017. V. 117. P. 7478–7509. https://doi.org/10.1021/acs.chemrev.6b00667
- Keller J., Schönle A., Hell S.W. // Opt. Express. 2007. V. 15. P. 3361–3371. https://doi.org/10.1364/oe.15.003361
- Rittweger E., Rankin B.R., Westphal V., Hell S.W. // Chem. Phys. Lett. 2007. V. 442. P. 483–487. https://doi.org/10.1016/j.cplett.2007.06.017
- Sharma R., Singh M., Sharma R. // Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020. V. 231. P. 117715. https://doi.org/10.1016/j.saa.2019.117715
- Zhang P., Goodwin P.M., Werner J.H. // Opt. Express. 2014. V. 22. P. 12398–12409. https://doi.org/10.1364/OE.22.012398
- Yu W., Ji1 Z., Dong D., Yang X., Xiao Y., Gong Q., Xi P., Shi K. // Laser Photonics Rev. 2016. V. 10. P. 147–152. https://doi.org/10.1002/lpor.201500151
- Frawley A.T., Wycisk V., Xiong Y., Galiani S., Sezgin E., Urbančič I., Jentzsch A.V., Leslie K.G., Eggeling C., Anderson H.L. // Chem. Sci. 2020. V. 11. P. 8955–8960. https://doi.org/10.1039/D0SC02447C
- Damenti M., Coceano G., Pennacchietti F., Bodén A., Testa I. // Neurobiol. Dis. 2021. V. 155. P. 105361. https://doi.org/10.1016/j.nbd.2021.105361
- Sahl, S.J., Hell, S.W. // In: High Resolution Imaging in Microscopy and Ophthalmology / Eds. Bille J. Cham: Springer, 2019. P. 3–32. https://doi.org/10.1007/978-3-030-16638-0_1
- Boden A., Pennacchietti F., Coceano G., Damenti M., Ratz M., Testa I. // Nat. Biotechnol. 2021. V. 39. P. 609–618. https://doi.org/10.1038/s41587-020-00779-2
- Willig K.I. // iScience. 2022. V. 25. P. 104961. https://doi.org/10.1016/j.isci.2022.104961
- Rust M.J., Bates M., Zhuang X.W. // Nat. Methods. 2006. V. 3. P. 793–795. https://doi.org/10.1038/nmeth929
- Hess S.T., Girirajan T.P.K., Mason M.D. // Biophys. J. 2006. V. 91. V. 4258–4272. https://doi.org/10.1529/biophysj.106.091116
- Kikuchi K., Adair L.D., Lin J., New E.J., Kaur A. // Angew. Chem. Int. Ed. Engl. 2023. V. 62. P. e202204745. https://doi.org/10.1002/anie.202204745
- Li H., Vaughan J.C. // Chem. Rev. 2018. V. 118. P. 9412–9454. https://doi.org/10.1021/acs.chemrev.7b00767
- Huang B., Wang W., Bates M., Zhuang X. // Science. 2008. V. 319. P. 810–813. https://doi.org/10.1126/science.1153529
- Albrecht N.E., Jiang D., Akhanov V., Hobson R., Speer C.M., Robichaux M.A., Samuel M.A. // Cell Rep. Methods. 2022. V. 2. P. 100253. https://doi.org/10.1016/j.crmeth.2022.100253
- Hu F., Zhu D., Dong H., Zhang P., Xing F., Li W., Yan R., Zhou J., Xu K., Pan L., Xu J. // iScience. 2022. V. 25. P. 105514. https://doi.org/10.1016/j.isci.2022.105514
- Kim D., Deerinck T.J., Sigal Y.M., Babcock H.P., Ellisman M.H., Zhuang X. // PLoS One. 2015. V. 10. P. e0124581. https://doi.org/10.1371/journal.pone.0124581
- Betzig E., Patterson G.H., Sougrat R., Lindwasser O.W., Olenych S., Bonifacino J.S., Davidson M.W., Lippincott-Schwartz J., Hess H.F. // Science. 2006. V. 313. P. 1642–1645. https://doi.org/10.1126/science.1127344
- Shtengel G., Galbraith J.A., Galbraith C.G., Lippincott-Schwartz J., Gillette J.M., Manley S., Sougrat R., Waterman C.M., Kanchanawong P., Davidson M.W., Fetter R.D., Hess H.F. // PNAS. 2009. V. 106. P. 3125–3130. https://doi.org/10.1073/pnas.0813131106
- Shtengel G., Wang Y., Zhang Z., Goh W.I., Hess H.F., Kanchanawong P. // Methods Cell Biol. 2014. V. 123. P. 273–294. https://doi.org/10.1016/B978-0-12-420138-5.00015-X
- Baddeley D., Bewersdorf J. // Annu. Rev. Biochem. 2018. V. 87. P. 965–989. https://doi.org/10.1146/annurev-biochem-060815-014801
- Lemcke H., Skorska A., Lang C.I., Johann L., David R. // Int. J. Mol. Sci. 2020. V. 21. P. 2819. https://doi.org/10.3390/ijms21082819
- Saha I., Saffarian S. // Biophys. J. 2020. V. 119. P. 581–592. https://doi.org/10.1016/j.bpj.2020.06.023
- Chojnacki J., Eggeling C. // Retrovirology. 2018. V. 15. P. 41. https://doi.org/10.1186/s12977-018-0424-3
- Herron J.C., Hu S., Watanabe T., Nogueira A.T., Liu B., Kern M.E., Aaron J., Taylor A., Pablo M., Chew T.L., Elston T.C., Hahn K.M. // Nat. Commun. 2022. V. 13. P. 4363. https://doi.org/10.1038/s41467-022-32038-0
- Parteka-Tojek Z., Zhu J.J., Lee B., Jodkowska K., Wang P., Aaron J., Chew T.L., Banecki K., Plewczynski D., Ruan Y. // Sci. Rep. 2022. V. 12. P. 8582. https://doi.org/10.1038/s41598-022-12568-9
- Trzaskoma P., Ruszczycki B., Lee B., Pels K.K., Krawczyk K., Bokota G., Szczepankiewicz A.A., Aaron J., Walczak A., Śliwińska M.A., Magalska A., Kadlof M., Wolny A., Parteka Z., Arabasz S., KissArabasz M., Plewczyński D., Ruan Y., Wilczyński G.M. // Nat. Commun. 2020. V. 11. P. 2120. https://doi.org/10.1038/s41467-020-15987-2
- Sharonov A., Hochstrasser R.M. // Proc. Natl. Acad. Sci. USA. 2006. V. 103. P. 18911–18916. https://doi.org/10.1073/pnas.0609643104
- Schnitzbauer J., Strauss M., Schlichthaerle T., Schueder F., Jungmann R. // Nat. Protoc. 2017. V. 12. P. 1198–1228. https://doi.org/10.1038/nprot.2017.024
- Jungmann R., Avendano M.S., Woehrstein J.B., Dai M., Shih W.M., Yin P. // Nat. Methods. 2014. V. 11. P. 313–318. https://doi.org/10.1038/nmeth.2835
- Niederauer C., Nguyen C., Wang-Henderson M., Stein J., Strauss S., Cumberworth A., Stehr F., Jungmann R., Schwille P., Ganzinger K.A. // Nat. Commun. 2023. V. 14. P. 4345. https://doi.org/10.1038/s41467-023-40065-8
- Brockman J.M., Su H., Blanchard A.T., Duan Y., Meyer T., Quach M.E., Glazier R., Bazrafshan A., Bender R.L., Kellner A.V., Ogasawara H., Ma R., Schueder F., Petrich B.G., Jungmann R., Li R., Mattheyses A.L., Ke Y., Salaita K. // Nat. Methods. 2020. V. 17. P. 1018–1024. https://doi.org/10.1038/s41592-020-0929-2
- Tholen M.M.E., Tas R.P., Wang Y., Albertazzi L. // Chem. Commun. (Camb). 2023. V. 59. P. 8332– 8342. https://doi.org/10.1039/d3cc00757j
- Chang Y., Kim D.H., Zhou K., Jeong M.G., Park S., Kwon Y., Hong T.M., Noh J., Ryu S.H. // Exp. Mol. Med. 2021. V. 53. P. 384–392. https://doi.org/10.1038/s12276-021-00572-4
- Riera R., Hogervorst T.P., Doelman W., Ni Y., Pujals S., Bolli E., Codée J.D.C., van Kasteren S.I., Albertazzi L. // Nat. Chem. Biol. 2021. V. 17. P. 1281–1288. https://doi.org/10.1038/s41589-021-00896-2
- Farrell M.V., Nunez A.C., Yang Z., Pérez-Ferreros P., Gaus K., Goyette J. // Sci. Signal. 2022. V. 15. P. eabg9782. https://doi.org/10.1126/scisignal.abg9782
- Oi C., Gidden Z., Holyoake L., Kantelberg O., Mochrie S., Horrocks M.H., Regan L. // Commun. Biol. 2020. V. 3. P. 458. https://doi.org/10.1038/s42003-020-01188-6
- Gwosch K.C., Pape J.K., Balzarotti F., Hoess P., Ellenberg J., Ries J., Hell S.W. // Nat. Methods. 2020. V. 17. P. 217–224. https://doi.org/10.1038/s41592-019-0688-0
- Balzarotti F., Eilers Y., Gwosch K.C., Gynnå A.H., Westphal V., Stefani F.D., Elf J., Hell S.W. // Science. 2017. V. 355. P. 606–612. https://doi.org/10.1126/science.aak9913
- Prakash K., Curd A.P. // Nat. Methods. 2023. V. 20. P. 48–51. https://doi.org/10.1038/s41592-022-01694-x
- Gwosch K.C., Balzarotti F., Pape J.K., Hoess P., Ellenberg J., Ries J., Matti U., Schmidt R., Sahl S.J., Hell S.W. // Nat. Methods. 2023. V. 20. P. 52–54. https://doi.org/10.1038/s41592-022-01695-w
- Wolff J.O., Scheiderer L., Engelhardt T., Engelhardt J., Matthias J., Hell S.W. // Science. 2023. V. 379. P. 1004–1010. https://doi.org/10.1126/science.ade2650
- Deguchi T., Iwanski M.K., Schentarra E.M., Heidebrecht C., Schmidt L., Heck J., Weihs T., Schnorrenberg S., Hoess P., Liu S., Chevyreva V., Noh K.M., Kapitein L.C., Ries J. // Science. 2023. V. 379. P. 1010–1015. https://doi.org/10.1126/science.ade2676
- Ostersehlt L.M., Jans D.C., Wittek A., KellerFindeisen J., Inamdar K., Sahl S.J., Hell S.W., Jakobs S. // Nat. Methods. 2022. V. 19. P. 1072–1075. https://doi.org/10.1038/s41592-022-01577-1
- Mulhall E.M., Gharpure A., Lee R.M., Dubin A.E., Aaron J.S., Marshall K.L., Spencer K.R., Reiche M.A., Henderson S.C., Chew T.L., Patapoutian A. // Nature. 2023. V. 620. P. 1117–1125. https://doi.org/10.1038/s41586-023-06427-4.
- Carsten A., Rudolph M., Weihs T., Schmidt R., Jansen I., Wurm C.A., Diepold A., Failla A.V., Wolters M., Aepfelbacher M. // Methods Appl. Fluoresc. 2022. V. 11. https://doi.org/10.1088/2050-6120/aca880
- Pape J.K., Stephan T., Balzarotti F., Büchner R., Lange F., Riedel D., Jakobs S., Hell S.W. // Proc. Natl. Acad. Sci. USA. 2020. V. 117. P. 20607–20614. https://doi.org/10.1073/pnas.2009364117
- Gustafsson M.G.L. // J. Microsc. 2000. V. 198. P. 82–87. https://doi.org/10.1046/j.1365-2818.2000.00710.x
- Gustafsson M.G.L., Shao L., Carlton P.M., Wang C.J.R., Golubovskaya I.N., Cande W.Z, Agard D.A., Sedat J.W. // Biophys. J. 2008. V. 94. P. 4957–4970. https://doi.org/10.1529/biophysj.107.120345
- Manton J.D. // Philos. Trans. A Math. Phys. Eng. Sci. 2022. V. 380. P. 20210109. https://doi.org/10.1098/rsta.2021.0109
- Zhao T., Wang Z., Chen T., Lei M., Yao B., Bianco P.R. // Front. Phys. 2021. V. 9. P. 672555. https://doi.org/10.3389/fphy.2021.672555
- Chen X., Zhong S., Hou Y., Cao R., Wang W., Li D., Dai Q., Kim D., Xi P. // Light Sci. Appl. 2023. V. 12. P. 172. https://doi.org/10.1038/s41377-023-01204-4
- Wang M., Chen J., Wang L., Zheng X., Zhou J., Zeng Y., Qu J., Shao Y., Gao B.Z. // Chemosensors. 2021. V. 9. P. 364. https://doi.org/10.3390/chemosensors9120364
- Hamel V., Guichard P., Fournier M., Guiet R., Fluckiger I., Seitz A., Gonczy P. // Biomed. Opt. Express. 2014. V. 5. P. 3326–3336. https://doi.org/10.1364/BOE.5.003326
- Dake F. // Opt. Rev. 2016. V. 23. P. 587–595. https://doi.org/10.1007/s10043-016-0234-6
- Xue Y., So P.T.C. // Opt. Express. 2018. V. 26. P. 20920– 20928. https://doi.org/10.1364/OE.26.020920
- Fiolka R., Beck M., Stemmer A. // Opt. Lett. 2008. V. 33. P. 1629–1631. https://doi.org/10.1364/OL.33.001629
- Roth J., Mehl J., Rohrbach A. // Biomed. Opt. Express. 2020. V. 11. P. 4008–4026. https://doi.org/10.1364/BOE.391561
- Hinsdale T.A., Stallinga S., Rieger B. // Biomed. Opt. Express. 2021. V. 12. P. 1181–1194. https://doi.org/10.1364/BOE.416546
- Heintzmann R., Huser T. // Chem. Rev. 2017. V. 117. P. 13890–13908. https://doi.org/10.1021/acs.chemrev.7b00218
- Ward E.N., Hecker L., Christensen C.N., Lamb J.R., Lu M., Mascheroni L., Chung C.W., Wang A., Rowlands C.J., Schierle G.S.K., Kaminski C.F. // Nat. Commun. 2022. V. 13. P. 7836. https://doi.org/10.1038/s41467-022-35307-0
- Mennella V. // In: Encyclopedia of Cell Biology (Second Edition) / Eds. Ralph A., Hart B.G.W., Stahl P.D. Academic Press, 2023. P. 105–121. https://doi.org/10.1016/B978-0-12-821618-7.00116-4
- Hong S., Wilton D.K., Stevens B., Richardson D.S. // Methods Mol. Biol. 2017. V. 1538. P. 155–167. https://doi.org/10.1007/978-1-4939-6688-2_12
- Sulkowski M.J., Han T.H., Ott C., Wang Q., Verheyen E.M., Lippincott-Schwartz J., Serpe M. // PLoS Genet. 2016. V. 12. P. e1005810. https://doi.org/10.1371/journal.pgen.1005810
- Badawi Y., Nishimune H. // Neurosci. Lett. 2020. V. 715. P. 134644. https://doi.org/10.1016/j.neulet.2019.134644
- Miao L., Yan C., Chen Y., Zhou W., Zhou X., Qiao Q., Xu Z. // Cell Chem. Biol. 2023. V. 30. P. 248–260. https://doi.org/10.1016/j.chembiol.2023.02.001
- Mudry E., Belkebir K., Girard J., Savatier J., Le Moal E., Nicoletti C., Allain M., Sentenac A. // Nat. Photon. 2012. V. 6. P. 312–315. https://doi.org/10.1038/nphoton.2012.83
- Mangeat T., Labouesse S., Allain M., Negash A., Martin E., Guénolé A., Poincloux R., Estibal C., Bouissou A., Cantaloube S., Vega E., Li T., Rouvière C., Allart S., Keller D., Debarnot V., Wang X.B., Michaux G., Pinot M., Le Borgne R., Tournier S., Suzanne M., Idier J., Sentenac A. // Cell Rep. Methods. 2021. V. 1. P. 100009. https://doi.org/10.1016/j.crmeth.2021.100009
- Labouesse S., Idier J., Sentenac A., Mangeat T., Allain M. // Random Illumination Microscopy from Variance Images / 28th European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, 2021. P. 785–789. https://doi.org/10.23919/Eusipco47968.2020.9287651
- Liu P. // Appl. Opt. 2022. V. 61. P. 2910–2914. https://doi.org/10.1364/AO.452709
- Affannoukoué K., Labouesse S., Maire G., Gallais L., Savatier J., Allain M., Rasedujjaman M., Legoff L., Idier J., Poincloux R., Pelletier F., Leterrier C., Mangeat T., Sentenac A. // Optica. 2023. V. 10. P. 1009–1017. https://doi.org/10.1364/OPTICA.487003
- Axelrod D. // Traffic. 2001. V. 2. P. 764–774. https://doi.org/10.1034/j.1600-0854.2001.21104.x
- Janco M., Dedova I., Bryce N.S., Hardeman E.C., Gunning P.W. // Biophys. Rev. 2020. V. 12. P. 879– 885. https://doi.org/10.1007/s12551-020-00720-6
- Shen H., Huang E., Das T., Xu H., Ellisman M., Liu Z. // Opt. Express. 2014. V. 22. P. 10728–10734. https://doi.org/10.1364/OE.22.010728
- Fish K.N. // Curr. Protoc. Cytom. 2009. V. 12. P. Unit12.18. https://doi.org/10.1002/0471142956.cy1218s50
- McCluskey K., Dekker N.H. // Opt. Commun. 2023. V. 538. P. 129474. https://doi.org/10.1016/j.optcom.2023.129474
- Fan D., Cnossen J., Hung S.-T., Kromm D., Dekker N.H., Verbiest G.J., Smith G.S. // Opt. Commun. 2023. V. 542. P. 129548. https://doi.org/10.1016/j.optcom.2023.129548
- Soubies E., Radwanska A., Grall D., Blanc-Féraud L., Van Obberghen-Schilling E., Schaub S. // Sci. Rep. 2019. V. 9. P. 1926. https://doi.org/10.1038/s41598-018-36119-3
- Jung Y., Riven I., Feigelson S.W., Kartvelishvily E., Tohya K., Miyasaka M., Alon R., Haran G. // Proc. Natl. Acad. Sci. USA. 2016. V. 113. P. E5916–E5924. https://doi.org/10.1073/pnas.1605399113
- Szalai A.M., Siarry B., Lukin J., Williamson D.J., Unsain N., Cáceres A., Pilo-Pais M., Acuna G., Refojo D., Owen D.M., Simoncelli S., Stefani F.D. // Nat. Commun. 2021. V. 12. P. 517. https://doi.org/10.1038/s41467-020-20863-0
- Young L.J., Ströhl F., Kaminski C.F.A. // J. Vis. Exp. 2016. V. 111. P. e53988. https://doi.org/10.3791/53988
- Opstad I.S., Ströhl F., Fantham M., Hockings C., Vanderpoorten O., van Tartwijk F.W., Lin J.Q., Tinguely J.-C., Dullo F.T., Kaminski-Schierle G.S., Ahluwalia B.S., Kaminski C.F. // J. Biophotonics. 2020. V. 13. P. e201960222. https://doi.org/10.1002/jbio.201960222
- Villegas-Hernández L.E., Dubey V., Nystad M., Tinguely J.-C., Coucheron D.A., Dullo F.T., Priyadarshi A., Acuña S., Ahmad A., Mateos J.M., Barmettler G., Ziegler U., Birgisdottir Å.B., Karlsson Hovd A.-M., Fenton K.A., Acharya G., Agarwal K., Ahluwalia B.S. // Light Sci. Appl. 2022. V. 11. P. 43. https://doi.org/10.1038/s41377-022-00731-w
Supplementary files
