Антимикробные метаболиты из назальной микробиоты свиней
- Авторы: Баранова А.А.1, Закалюкина Ю.В.2, Тюрин А.П.1, Коршун В.А.1, Белозерова О.А.1, Бирюков М.В.2, Моисеенко А.В.1,2, Терехов С.С.1, Алферова В.А.1
-
Учреждения:
- ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
- Московский государственный университет им. М.В. Ломоносова
- Выпуск: Том 50, № 2 (2024)
- Страницы: 153-174
- Раздел: Статьи
- URL: https://archivog.com/0132-3423/article/view/670962
- DOI: https://doi.org/10.31857/S0132342324020051
- EDN: https://elibrary.ru/ONFXKK
- ID: 670962
Цитировать
Аннотация
Микробиом млекопитающих считается потенциальным источником биологически активных соединений, в том числе антибиотиков. В данной работе мы изучили культивируемые микроорганизмы из назальной микробиоты венгерской домашней свиньи (Sus domesticus). Таксономическое положение 20 выделенных штаммов (включая 18 бактерий, по одному виду дрожжевых и мицелиальных грибов) было определено с помощью филогенетического анализа, морфологических и биохимических исследований. Штаммы были подвергнуты тестированию на чувствительность к антибиотикам и скринингу антимикробной активности. Установлено, что штамм Pseudomonas aeruginosa SM-11 продуцирует четыре известные антибактериальные молекулы (пиоцианин, пиохелин, пиолутеорин, монорамнолипид). Продукция пиоцианина была индуцирована сокультивированием с грамотрицательными тест-микроорганизмами Pseudomonas aeruginosa ATCC 27853 и Escherichia coli ATCC 25922. Показано, что микробиота млекопитающих может служить ценным источником штаммов, продуцирующих антимикробные препараты, а также штаммов редких таксонов. Для ее изучения наиболее перспективны биотехнологические подходы, основанные на индукции биосинтеза вторичных метаболитов с помощью сокультивирования с тест-микроорганизмами. Методы сокультивирования – перспективный подход для изучения противомикробных препаратов из молчащих кластеров биосинтетических генов.
Ключевые слова
Полный текст

Об авторах
А. А. Баранова
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
Email: alferovava@gmail.com
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10
Ю. В. Закалюкина
Московский государственный университет им. М.В. Ломоносова
Email: alferovava@gmail.com
факультет почвоведения
Россия, 119991, Москва, Ленинские горы, 1с12А. П. Тюрин
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
Email: alferovava@gmail.com
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10
В. А. Коршун
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
Email: alferovava@gmail.com
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10
О. А. Белозерова
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
Email: alferovava@gmail.com
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10
М. В. Бирюков
Московский государственный университет им. М.В. Ломоносова
Email: alferovava@gmail.com
биологический факультет
Россия, 119234, Москва, Ленинские горы, 1с12А. В. Моисеенко
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН; Московский государственный университет им. М.В. Ломоносова
Email: alferovava@gmail.com
биологический факультет
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10; 119234, Москва, Ленинские горы, 1с12С. С. Терехов
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
Email: alferovava@gmail.com
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10
В. А. Алферова
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
Автор, ответственный за переписку.
Email: alferovava@gmail.com
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10
Список литературы
- Hutchings M.I., Truman A.W., Wilkinson B. // Curr. Opin. Microbiol. 2019. V. 51. P. 72–80. https://doi.org/10.1016/j.mib.2019.10.008
- Miethke M., Pieroni M., Weber T., Brönstrup M., Hammann P., Halby L., Arimondo P.B., Glaser P., Aigle B., Bode H.B., Moreira R., Li Y., Luzhetskyy A., Medema M. H., Pernodet J., Stadler M., Tormo J.R., Genilloud O., Truman A.W., Weissman K.J., Takano E., Sabatini S., Stegmann E., Brötz-Oesterhelt H., Wohlleben W., Seemann M., Empting M., Hirsch A.K.H., Loretz B., Lehr C.M., Titz A., Herrmann J., Jaeger T., Alt S., Hesterkamp T., Winterhalter M., Schiefer A., Pfarr K., Hoerauf A., Graz H., Graz M., Lindvall M., Ramurthy S., Karlén A., Dongen M., Petkovic H., Keller A., Peyrane F., Donadio S., Fraisse L., Piddock L.J.V., Gilbert I.H., Moser H.E, Müller R. // Nat. Rev. Chem. 2021. V. 5. P. 726–749. https://doi.org/10.1038/s41570-021-00313-1
- Bernal F.A., Hammann P., Kloss F. // Curr. Opin. Biotechnol. 2022. V. 78. P. 102783. https://doi.org/10.1016/j.copbio.2022.102783
- Cook M.A., Wright G.D. // Sci. Transl. Med. 2022. V. 14. P. eabo7793. https://doi.org/10.1126/scitranslmed.abo7793
- Dai J., Han R., Xu Y., Li N., Wang J., Dan W. // Bioorg. Chem. 2020. V. 101. P. 103922. https://doi.org/10.1016/j.bioorg.2020.103922
- Atanasov A., Zotchev S., Dirsch V., Orhan I., Banach M., Rollinger J., Barreca D., Weckwerth W., Bauer R., Edward B., Majeed M., Bishayee A., Bochkov V., Bonn G., Braidy N., Bucar F., Cifuentes A., D’Onofrio G., Bodkin M., Supuran C. // Nat. Rev. Drug Discov. 2021. V. 20. P. 1–17. https://doi.org/10.1038/s41573-020-00114-z
- Newman D.J., Cragg G.M. // J. Nat. Prod. 2020. V. 83. P. 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
- Baranova A.A., Alferova V.A., Korshun V.A., Tyurin A.P. // Life. 2023. V. 13. P. 1073. https://doi.org/10.3390/life13051073
- Walesch S., Birkelbach J., Jézéquel G., Haeckl F.P.J., Hegemann J.D., Hesterkamp T., Hirsch A.K.H., Hammann P., Müller R. // EMBO Rep. 2023. V. 24. P. e56033. https://doi.org/10.15252/embr.202256033
- Баранова А.А., Алферова В.А., Коршун В.А., Тюрин А.П. // Биоорг. химия. 2020. Т. 46. С. 593–665. [Baranova A.A., Alferova V.A., Korshun V.A., Tyurin A.P. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 903–971.] https://doi.org/10.1134/S1068162020060023
- Baranova A.A., Zakalyukina Y.V., Ovcharenko A.A., Korshun V.A., Tyurin A.P. // Biology (Basel). 2022. V. 11. P. 1676. https://doi.org/10.3390/biology11111676
- Abdelaleem E.R., Samy M.N., Abdelmohsen U.R., Desoukey S.Y. // Lett. Appl. Microbiol. 2022. V. 74. P. 8–16. https://doi.org/10.1111/lam.13559
- Imai Y., Meyer K.J., Iinishi A., Favre-Godal Q., Green R., Manuse S., Caboni M., Mori M., Niles S., Ghiglieri M., Honrao C., Ma X., Guo J.J., Makriyannis A., Linares-Otoya L., Böhringer N., Wuisan Z.G., Kaur H., Wu R., Mateus A., Typas A., Savitski M.M., Espinoza J.L., O’Rourke A., Nelson K.E., Hiller S., Noinaj N., Schäberle T.F., D’Onofrio A., Lewis K. // Nature. 2019. V. 576. P. 459–464. https://doi.org/10.1038/s41586-019-1791-1
- Wang L., Ravichandran V., Yin Y., Yin J., Zhang Y. // Trends Biotechnol. 2019. V. 37. P. 492–504. https://doi.org/10.1016/j.tibtech.2018.10.003
- Donia M.S., Fischbach M.A. // Science. 2015. V. 349. P. 1254766. https://doi.org/10.1126/science.1254766
- Mousa W.K., Athar B., Merwin N.J., Magarvey N.A. // Nat. Prod. Rep. 2017. V. 34. P. 1302–1331. https://doi.org/10.1039/C7NP00021A
- Chiumento S., Roblin C., Kieffer-Jaquinod S., Tachon S., Leprètre C., Basset C., Aditiyarini D., Olleik H., Nicoletti C., Bornet O., Iranzo O., Maresca M., Hardré R., Fons M., Giardina T., Devillard E., Guerlesquin F., Couté Y., Atta M., Perrier J., Lafond M., Duarte V. // Sci. Adv. 2019. V. 5. P. eaaw9969. https://doi.org/10.1126/sciadv.aaw9969
- Barber C.C., Zhang W. // J. Ind. Microbiol. Biotechnol. 2021. V. 48. P. kuab010. https://doi.org/10.1093/jimb/kuab010
- Lewis K. // Cell. 2020. V. 181. P. 29–45. https://doi.org/10.1016/j.cell.2020.02.056
- Pirolo M., Espinosa-Gongora C., Alberdi A., Eisenho- fer R., Soverini M., Eriksen E.Ø., Pedersen K.S., Guardabassi L. // Anim. Microbiome. 2023. V. 5. P. 5. https://doi.org/10.1186/s42523-023-00226-y
- Petrelli S., Buglione M., Rivieccio E., Ricca E., Baccigalupi L., Scala G., Fulgione D. // Anim. Microbiome. 2023. V. 5. P. 14. https://doi.org/10.1186/s42523-023-00235-x
- Vasco K., Guevara N., Mosquera J., Zapata S., Zhang L. // Anim. Microbiome. 2022. V. 4. P. 65. https://doi.org/10.1186/s42523-022-00218-4
- Kauter A., Epping L., Semmler T., Antao E.-M., Kannapin D., Stoeckle S.D., Gehlen H., Lübke-Becker A., Günther S., Wieler L.H., Walther B. // Anim. Microbiome. 2019. V. 1. P. 14. https://doi.org/10.1186/s42523-019-0013-3
- O’Sullivan J.N., Rea M.C., O’Connor P.M., Hill C., Ross R.P. // FEMS Microbiol. Ecol. 2019. V. 95. P. fiy241. https://doi.org/10.1093/femsec/fiy241
- Wertz P.W., De Szalay S. // Antibiotics. 2020. V. 9. P. 159. https://doi.org/10.3390/antibiotics9040159
- O’Sullivan J.N., O’Connor P.M., Rea M.C., O’Sulli- van O., Walsh C.J., Healy B., Mathur H., Field D., Hill C., Ross R.P. // J. Bacteriol. 2020. V. 202. P. e00639-19. https://doi.org/10.1128/JB.00639-19
- O’Neill A.M., Worthing K.A., Kulkarni N., Li F., Nakatsuji T., McGrosso D., Mills R.H., Kalla G., Cheng J.Y., Norris J.M., Pogliano K., Pogliano J., Gonzalez D.J., Gallo R.L. // eLife. 2021. V. 10. P. e66793. https://doi.org/10.7554/eLife.66793
- Swaney M.H., Kalan L.R. // Infect. Immun. 2021. V. 89. P. e00695-20. https://doi.org/10.1128/IAI.00695-20
- Heilbronner S., Krismer B., Brötz-Oesterhelt H., Peschel A. // Nat. Rev. Microbiol. 2021. V. 19. P. 726–739. https://doi.org/10.1038/s41579-021-00569-w
- Terekhov S.S., Smirnov I.V., Malakhova M.V., Samoi- lov A.E., Manolov A.I., Nazarov A.S., Danilov D.V., Dubiley S.A., Osterman I.A., Rubtsova M.P., Kostryukova E.S., Ziganshin R.H., Kornienko M.A., Vanyushkina A.A., Bukato O.N., Ilina E.N., Vlasov V.V., Severinov K.V., Gabibov A.G., Altman S. // PNAS. 2018. V. 115. P. 9551–9556. https://doi.org/10.1073/pnas.1811250115
- Covington B.C., Seyedsayamdost M.R. // J. Am. Chem. Soc. 2022. V. 144. P. 14997–15001. https://doi.org/10.1021/jacs.2c05790
- Egerszegi I., Rátky J., Solti L., Brüssow K.-P. // Arch. Anim. Breed. 2003. V. 46. P. 245–256. https://doi.org/10.5194/aab-46-245-2003
- Breed cards: Mangalitsa (Swallow-Belly Manga- litsa) Pig. https://www.pig333.com/articles/breed-cards-mangalitsa-swallow-belly-mangalitsa-pig_15977/
- Alhede M., Qvortrup K., Liebrechts R., Høiby N., Givskov M., Bjarnsholt T. // FEMS Immunol. Med. Microbiol. 2012. V. 65. P. 335–342. https://doi.org/10.1111/j.1574-695X.2012.00956.x
- Tihlaříková E., Neděla V., Đorđević B. // Sci. Rep. 2019. V. 9. P. 2300. https://doi.org/10.1038/s41598-019-38835-w
- Muscariello L., Rosso F., Marino G., Giordano A., Barbarisi M., Cafiero G., Barbarisi A. // J. Cell. Physiol. 2005. V. 205. P. 328–334. https://doi.org/10.1002/jcp.20444
- Bergmans L., Moisiadis P., Van Meerbeek B., Quirynen M., Lambrechts P. // Int. Endod. J. 2005. V. 38. P. 775–788. https://doi.org/10.1111/j.1365-2591.2005.00999.x
- Grund E., Kroppenstedt R.M. // Int. J. Syst. Evol. Microbiol. 1990. V. 40. P. 5–11. https://doi.org/10.1099/00207713-40-1-5
- Wei Q., Ma L. // Int. J. Mol. Sci. 2013. V. 14. P. 20983– 21005. https://doi.org/10.3390/ijms141020983
- Brandel J., Humbert N., Elhabiri M., Schalk I.J., Mislin G.L.A., Albrecht-Gary A.-M. // Dalton Trans. 2012. V. 41. P. 2820. https://doi.org/10.1039/c1dt11804h
- Abdelaziz A.A., Kamer A.M.A., Al-Monofy K.B., Al-Madboly L.A. // Microb. Cell Fact. 2022. V. 21. P. 262. https://doi.org/10.1186/s12934-022-01988-x
- Brodhagen M., Henkels M.D., Loper J.E. // Appl. Environ. Microbiol. 2004. V. 70. P. 1758–1766. https://doi.org/10.1128/AEM.70.3.1758-1766.2004
- Esposito R., Speciale I., De Castro C., D’Errico G., Russo Krauss I. // Int. J. Mol. Sci. 2023. V. 24. P. 5395. https://doi.org/10.3390/ijms24065395
- Gogineni V., Chen X., Hanna G., Mayasari D., Hamann M.T. // J. Antibiot. (Tokyo). 2020. V. 73. P. 490–503. https://doi.org/10.1038/s41429-020-0321-6
- Masson F., Lemaitre B. // Microbiol. Mol. Biol. Rev. 2020. V. 84. P. e00089-20. https://doi.org/10.1128/MMBR.00089-20
- Olofsson T.C., Butler È., Markowicz P., Lindholm C., Larsson L., Vásquez A. // Int. Wound J. 2016. V. 13. P. 668–679. https://doi.org/10.1111/iwj.12345
- Varijakzhan D., Loh J.-Y., Yap W.-S., Yusoff K., Seboussi R., Lim S.-H.E., Lai K.-S., Chong C.-M. // Marine Drugs. 2021. V. 19. P. 246. https://doi.org/10.3390/md19050246
- Abd-Elgawad M.M.M. // Life. 2022. V. 12. P. 1360. https://doi.org/10.3390/life12091360
- Bassols A., Costa C., Eckersall P.D., Osada J., Sabrià J., Tibau J. // Proteomics Clin. Appl. 2014. V. 8. P. 715–731. https://doi.org/10.1002/prca.201300099
- Heinritz S.N., Mosenthin R., Weiss E. // Nutr. Res. Rev. 2013. V. 26. P. 191–209. https://doi.org/10.1017/S0954422413000152
- Espinosa-Gongora C., Larsen N., Schønning K., Fredholm M., Guardabassi L. // PLoS One. 2016. V. 11. P. e0160331. https://doi.org/10.1371/journal.pone.0160331
- Chlebicz A., Śliżewska K. // Int. J. Environ. Res. Public Health. 2018. V. 15. P. 863. https://doi.org/10.3390/ijerph15050863
- Meurens F., Summerfield A., Nauwynck H., Saif L., Ger- dts V. // Trends Microbiol. 2012. V. 20. P. 50–57. https://doi.org/10.1016/j.tim.2011.11.002
- Gaskins H.R. // In: Swine Nutrition / Eds. Lewis A.J, Southern L.L. CRC Press, 2000. P. 585–609. https://doi.org/10.1201/9781420041842
- Crespo-Piazuelo D., Estellé J., Revilla M., Criado-Mesas L., Ramayo-Caldas Y., Óvilo C., Fernández A.I., Ballester M., Folch J.M. // Sci. Rep. 2018. V. 8. P. 12727. https://doi.org/10.1038/s41598-018-30932-6
- Isaacson R., Kim H.B. // Anim. Health Res. Rev. 2012. V. 13. P. 100–109. https://doi.org/10.1017/S1466252312000084
- Correa-Fiz F., Gonçalves dos Santos J.M., Illas F., Aragon V. // Sci. Rep. 2019. V. 9. P. 6545. https://doi.org/10.1038/s41598-019-43022-y
- Correa-Fiz F., Fraile L., Aragon V. // BMC Genomics. 2016. V. 17. P. 404. https://doi.org/10.1186/s12864-016-2700-8
- Obregon-Gutierrez P., Aragon V., Correa-Fiz F. // Pathogens. 2021. V. 10. P. 697. https://doi.org/10.3390/pathogens10060697
- Correa-Fiz F., Neila-Ibáñez C., López-Soria S., Napp S., Martinez B., Sobrevia L., Tibble S., Aragon V., Migura-Garcia L. // Sci. Rep. 2020. V. 10. P. 20354. https://doi.org/10.1038/s41598-020-77313-6
- Wang T., He Q., Yao W., Shao Y., Li J., Huang F. // Front. Microbiol. 2019. V. 10. P. 1083. https://doi.org/10.3389/fmicb.2019.01083
- Dai H., Chen A., Wang Y., Lu B., Wang Y., Chen J., Huang Y., Li Z., Fang Y., Xiao T., Cai H., Du Z., Wei Q., Kan B., Wang D. // Int. J. Syst. Evol. Microbiol. 2019. V. 69. P. 852–858. https://doi.org/10.1099/ijsem.0.003248
- Matias Rodrigues J.F., Schmidt T.S.B., Tackmann J., Mering C. von // Bioinformatics. 2017. V. 33. P. 3808– 3810. https://doi.org/10.1093/bioinformatics/btx517
- Wang F., Gai Y., Chen M., Xiao X. // Int. J. Syst. Evol. Microbiol. 2009. V. 59. P. 2759–2762. https://doi.org/10.1099/ijs.0.008912-0
- Touchette D., Altshuler I., Gostinčar C., Zalar P., Raymond-Bouchard I., Zajc J., McKay C.P., Gunde-Cimerman N., Whyte L.G. // ISME J. 2022. V. 16. P. 221–232. https://doi.org/10.1038/s41396-021-01030-9
- Raza M., Zhang Z.-F., Hyde K.D., Diao Y.-Z., Cai L. // Fungal Diversity. 2019. V. 99. P. 1–104. https://doi.org/10.1007/s13225-019-00434-5
- Bennur T., Ravi Kumar A., Zinjarde S.S., Javdekar V. // J. Appl. Microbiol. 2016. V. 120. P. 1–16. https://doi.org/10.1111/jam.12950
- Xu D., Nepal K.K., Chen J., Harmody D., Zhu H., McCarthy P.J., Wright A.E., Wang G. // Synth. Syst. Biotechnol. 2018. V. 3. P. 246–251. https://doi.org/10.1016/j.synbio.2018.10.008
- Vela A.I., Sánchez-Porro C., Aragón V., Olvera A., Domínguez L., Ventosa A., Fernández-Garayzábal J.F. // Int. J. Syst. Evol. Microbiol. 2010. V. 60. P. 2446–2450. https://doi.org/10.1099/ijs.0.016626-0
- Vela A.I., Arroyo E., Aragon V., Sanchez-Porro C., Latre M.V., Cerda-Cuellar M., Ventosa A., Dominguez L., Fernandez-Garayzabal J.F. // Int. J. Syst. Evol. Microbiol. 2009. V. 59. P. 671–674. https://doi.org/10.1099/ijs.0.006205-0
- Fusco V., Quero G.M., Cho G.-S., Kabisch J., Meske D., Neve H., Bockelmann W., Franz C.M.A.P. // Front. Microbiol. 2015. V. 6. P. 155. https://doi.org/10.3389/fmicb.2015.00155
- Borgo F., Ballestriero F., Ferrario C., Fortina M.G. // Ann. Microbiol. 2015. V. 65. P. 833–839. https://doi.org/10.1007/s13213-014-0924-x
- Gaaloul N., Ben Braiek, O., Berjeaud J.M., Arthur T., Cavera V.L., Chikindas M.L., Hani K., Ghrairi T. // J. Food Saf. 2014. V. 34. P. 300–311. https://doi.org/10.1111/jfs.12126
- Guarino A., Giannella R., Thompson M.R. // Infect. Immun. 1989. V. 57. P. 649–652. https://doi.org/10.1128/iai.57.2.649-652.1989
- Rieusset L., Rey M., Muller D., Vacheron J., Gerin F., Dubost A., Comte G., Prigent-Combaret C. // Microb. Biotechnol. 2020. V. 13. P. 1562–1580. https://doi.org/10.1111/1751-7915.13598
- Kudo S., Morimoto Y.V., Nakamura S. // Microbiology. 2015. V. 161. P. 701–707. https://doi.org/10.1099/mic.0.000031
- Dickerman A., Bandara A.B., Inzana T.J. // Int. J. Syst. Evol. Microbiol. 2020. V. 70. P. 180–186. https://doi.org/10.1099/ijsem.0.003730
- Fuller A.T., Horton J.M. // J. Gen. Microbiol. 1950. V. 4. P. 417–433. https://doi.org/10.1099/00221287-4-3-417
- Caulier S., Nannan C., Gillis A., Licciardi F., Bragard C., Mahillon J. // Front. Microbiol. 2019. V. 10. P. 302. https://doi.org/10.3389/fmicb.2019.00302
- Tyurin A., Alferova V., Korshun V. // Microorganisms. 2018. V. 6. P. 52. https://doi.org/10.3390/microorganisms6020052
- Björkroth K.J., Schillinger U., Geisen R., Weiss N., Hoste B., Holzapfel W.H., Korkeala H.J., Vandam- me P. // Int. J. Syst. Evol. Microbiol. 2002. V. 52. P. 141–148. https://doi.org/10.1099/00207713-52-1-141
- Fortina M.G., Ricci G., Mora D., Manachini P.L. // Int. J. Syst. Evol. Microbiol. 2004. V. 54. P. 1717–1721. https://doi.org/10.1099/ijs.0.63190-0
- Jančič U., Gorgieva S. // Pharmaceutics. 2021. V. 14. P. 76. https://doi.org/10.3390/pharmaceutics14010076
- Muthukrishnan P., Chithra Devi D., Mostafa A.A., Alsamhary K.I., Abdel-Raouf N., Nageh Sholkamy E. // J. Infect. Public Health. 2020. V. 13. P. 1522–1532. https://doi.org/10.1016/j.jiph.2020.06.025
- Baranova A.A., Chistov A.A., Tyurin A.P., Prokhorenko I.A., Korshun V.A., Biryukov M.V., Alferova V.A., Zakalyukina Y.V. // Microorganisms. 2020. V. 8. P. 1948. https://doi.org/10.3390/microorganisms8121948
- Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 11th Ed. // Clinical and Laboratory Standards Institute (CLSI): Wayne, USA, 2015. https://clsi.org/standards/products/microbiology/documents/m07/
- Performance Standards for Antimicrobial Susceptibility Testing: 25th Informational Supplement // Clinical and Laboratory Standards Institute (CLSI): Wayne, USA, 2015. https://clsi.org/media/1631/m02a12_sample.pdf
- Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd Ed. // Clinical and Laboratory Standards Institute (CLSI): Wayne, USA, 2008. https://clsi.org/media/1461/m27a3_sample.pdf
- Smith A.C., Hussey M.A. // Gram Stain Protocols. American Society for Microbiology, 2005. https://asm.org/getattachment/5c95a063-326b-4b2f-98ce-001de9a5ece3/gram-stain-protocol-2886.pdf
- Glass N.L., Donaldson G.C. // Appl. Environ. Microbiol. 1995. V. 61. P. 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
- White T.J., Bruns T., Lee S., Taylor J. // In: PCR Protocols. A Guide to Methods and Applications. Academic Press, Cambridge, Massachusetts, U.S., 1990. P. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Lane D.J., Stackebrandt E., Goodfellow M. // Nucleic Acid Techniques in Bacterial Systematic. Wiley, Hoboken, New Jersey, U.S., 1991.
- Glauert A.M. // Practical Methods in Electron Microscopy. North-Holland Publishing Company, Amsterdam, London, 1974.
- Wang M., Carver J.J., Phelan V.V., Sanchez L.M., Garg N., Peng Y., Nguyen D.D., Watrous J., Kapono C.A., Luzzatto-Knaan T., Porto C., Bouslimani A., Melnik A.V., Meehan M.J., Liu W.-T., Crüsemann M., Boudreau P.D., Esquenazi E., Sandoval-Calderón M., Kersten R.D., Pace L.A., Quinn R.A., Duncan K.R., Hsu C.-C., Floros D.J., Gavilan R.G., Kleigrewe K., Northen T., Dutton R.J., Parrot D., Carlson E.E., Aigle B., Michelsen C.F., Jelsbak L., Sohlenkamp C., Pevzner P., Edlund A., McLean J., Piel J., Murphy B.T., Gerwick L., Liaw C.-C., Yang Y.-L., Humpf H.-U., Maansson M., Keyzers R.A., Sims A.C., Johnson A.R., Sidebottom A.M., Sedio B.E., Klitgaard A., Larson C.B., Boya P C.A., Torres-Mendoza D., Gonzalez D.J., Silva D.B., Marques L.M., Demarque D.P., Pociute E., O’Neill E.C., Briand E., Helfrich E.J.N., Granato- sky E.A., Glukhov E., Ryffel F., Houson H., Mohima- ni H., Kharbush J.J., Zeng Y., Vorholt J.A., Kurita K.L., Charusanti P., McPhail K.L., Nielsen K.F., Vuong L., Elfeki M., Traxler M.F., Engene N., Koyama N., Vin- ing O.B., Baric R., Silva R.R., Mascuch S.J., Tomasi S., Jenkins S., Macherla V., Hoffman T., Agarwal V., Williams P.G., Dai J., Neupane R., Gurr J., Rodrí- guez A.M.C., Lamsa A., Zhang C., Dorrestein K., Duggan B.M., Almaliti J., Allard P.-M., Phapale P., Nothias L.-F., Alexandrov T., Litaudon M., Wolfen- der J.-L., Kyle J.E., Metz T.O., Peryea T., Nguyen D.-T., VanLeer D., Shinn P., Jadhav A., Müller R., Waters K.M., Shi W., Liu X., Zhang L., Knight R., Jensen P.R., Palsson B.Ø., Pogliano K., Linington R.G., Gutiérrez M., Lopes N.P., Gerwick W.H., Moore B.S., Dorrestein P.C., Bandeira N. // Nat. Biotechnol. 2016. V.34. P. 828–837. https://doi.org/10.1038/nbt.3597
Дополнительные файлы
