Antimicrobial metabolites from pig nasal microbiota
- Авторлар: Baranova A.A.1, Zakalyukina Y.V.2, Tyurin A.P.1, Korshun V.A.1, Belozerova O.A.1, Biryukov M.V.2, Moiseenko A.V.1,2, Terekhov S.S.1, Alferova V.A.1
-
Мекемелер:
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- Lomonosov Moscow State University
- Шығарылым: Том 50, № 2 (2024)
- Беттер: 153-174
- Бөлім: Articles
- URL: https://archivog.com/0132-3423/article/view/670962
- DOI: https://doi.org/10.31857/S0132342324020051
- EDN: https://elibrary.ru/ONFXKK
- ID: 670962
Дәйексөз келтіру
Аннотация
The mammal microbiome is considered an attractive source of bioactive compounds, including antibiotics. In this work, we studied cultivable microorganisms from the nasal microbiota of the Hungarian domestic pig (Sus domesticus). Taxonomy positions of the 20 isolated strains (18 bacteria, 1 yeast, 1 fungus) were determined by phylogenetic analysis, morphological study and a substrate utilization assay. The strains were subjected to antibiotic susceptibility testing and antimicrobial activity screening. Pseudomonas aeruginosa strain SM-11 was found to produce 4 known antibacterial molecules (pyocyanine, pyochelin, pyoluteorin, monorhamnolipid). Production of pyocyanine was induced by cocultivation with test microorganisms Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25922. The results suggest that the mammal microbiota might serve as a valuable source of antimicrobial-producing strains, including those of rare taxa. Cocultivation techniques are promising approach to explore antimicrobials from silent biosynthetic gene clusters.
Негізгі сөздер
Толық мәтін

Авторлар туралы
A. Baranova
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: alferovava@gmail.com
Ресей, 117997, Moscow, ul. Miklukho-Maklaya, 16/10
Y. Zakalyukina
Lomonosov Moscow State University
Email: alferovava@gmail.com
Department of Soil Science
Ресей, 119991, Moscow, ul. Leninskie Gory, 1/12A. Tyurin
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: alferovava@gmail.com
Ресей, 117997, Moscow, ul. Miklukho-Maklaya, 16/10
V. Korshun
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: alferovava@gmail.com
Ресей, 117997, Moscow, ul. Miklukho-Maklaya, 16/10
O. Belozerova
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: alferovava@gmail.com
Ресей, 117997, Moscow, ul. Miklukho-Maklaya, 16/10
M. Biryukov
Lomonosov Moscow State University
Email: alferovava@gmail.com
Department of Biology
Ресей, 119991, Moscow, ul. Leninskie Gory, 1/12A. Moiseenko
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University
Email: alferovava@gmail.com
Department of Biology
Ресей, 117997, Moscow, ul. Miklukho-Maklaya, 16/10; 119991, Moscow, ul. Leninskie Gory, 1/12S. Terekhov
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: alferovava@gmail.com
Ресей, 117997, Moscow, ul. Miklukho-Maklaya, 16/10
V. Alferova
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: alferovava@gmail.com
Ресей, 117997, Moscow, ul. Miklukho-Maklaya, 16/10
Әдебиет тізімі
- Hutchings M.I., Truman A.W., Wilkinson B. // Curr. Opin. Microbiol. 2019. V. 51. P. 72–80. https://doi.org/10.1016/j.mib.2019.10.008
- Miethke M., Pieroni M., Weber T., Brönstrup M., Hammann P., Halby L., Arimondo P.B., Glaser P., Aigle B., Bode H.B., Moreira R., Li Y., Luzhetskyy A., Medema M. H., Pernodet J., Stadler M., Tormo J.R., Genilloud O., Truman A.W., Weissman K.J., Takano E., Sabatini S., Stegmann E., Brötz-Oesterhelt H., Wohlleben W., Seemann M., Empting M., Hirsch A.K.H., Loretz B., Lehr C.M., Titz A., Herrmann J., Jaeger T., Alt S., Hesterkamp T., Winterhalter M., Schiefer A., Pfarr K., Hoerauf A., Graz H., Graz M., Lindvall M., Ramurthy S., Karlén A., Dongen M., Petkovic H., Keller A., Peyrane F., Donadio S., Fraisse L., Piddock L.J.V., Gilbert I.H., Moser H.E, Müller R. // Nat. Rev. Chem. 2021. V. 5. P. 726–749. https://doi.org/10.1038/s41570-021-00313-1
- Bernal F.A., Hammann P., Kloss F. // Curr. Opin. Biotechnol. 2022. V. 78. P. 102783. https://doi.org/10.1016/j.copbio.2022.102783
- Cook M.A., Wright G.D. // Sci. Transl. Med. 2022. V. 14. P. eabo7793. https://doi.org/10.1126/scitranslmed.abo7793
- Dai J., Han R., Xu Y., Li N., Wang J., Dan W. // Bioorg. Chem. 2020. V. 101. P. 103922. https://doi.org/10.1016/j.bioorg.2020.103922
- Atanasov A., Zotchev S., Dirsch V., Orhan I., Banach M., Rollinger J., Barreca D., Weckwerth W., Bauer R., Edward B., Majeed M., Bishayee A., Bochkov V., Bonn G., Braidy N., Bucar F., Cifuentes A., D’Onofrio G., Bodkin M., Supuran C. // Nat. Rev. Drug Discov. 2021. V. 20. P. 1–17. https://doi.org/10.1038/s41573-020-00114-z
- Newman D.J., Cragg G.M. // J. Nat. Prod. 2020. V. 83. P. 770–803. https://doi.org/10.1021/acs.jnatprod.9b01285
- Baranova A.A., Alferova V.A., Korshun V.A., Tyurin A.P. // Life. 2023. V. 13. P. 1073. https://doi.org/10.3390/life13051073
- Walesch S., Birkelbach J., Jézéquel G., Haeckl F.P.J., Hegemann J.D., Hesterkamp T., Hirsch A.K.H., Hammann P., Müller R. // EMBO Rep. 2023. V. 24. P. e56033. https://doi.org/10.15252/embr.202256033
- Баранова А.А., Алферова В.А., Коршун В.А., Тюрин А.П. // Биоорг. химия. 2020. Т. 46. С. 593–665. [Baranova A.A., Alferova V.A., Korshun V.A., Tyurin A.P. // Russ. J. Bioorg. Chem. 2020. V. 46. P. 903–971.] https://doi.org/10.1134/S1068162020060023
- Baranova A.A., Zakalyukina Y.V., Ovcharenko A.A., Korshun V.A., Tyurin A.P. // Biology (Basel). 2022. V. 11. P. 1676. https://doi.org/10.3390/biology11111676
- Abdelaleem E.R., Samy M.N., Abdelmohsen U.R., Desoukey S.Y. // Lett. Appl. Microbiol. 2022. V. 74. P. 8–16. https://doi.org/10.1111/lam.13559
- Imai Y., Meyer K.J., Iinishi A., Favre-Godal Q., Green R., Manuse S., Caboni M., Mori M., Niles S., Ghiglieri M., Honrao C., Ma X., Guo J.J., Makriyannis A., Linares-Otoya L., Böhringer N., Wuisan Z.G., Kaur H., Wu R., Mateus A., Typas A., Savitski M.M., Espinoza J.L., O’Rourke A., Nelson K.E., Hiller S., Noinaj N., Schäberle T.F., D’Onofrio A., Lewis K. // Nature. 2019. V. 576. P. 459–464. https://doi.org/10.1038/s41586-019-1791-1
- Wang L., Ravichandran V., Yin Y., Yin J., Zhang Y. // Trends Biotechnol. 2019. V. 37. P. 492–504. https://doi.org/10.1016/j.tibtech.2018.10.003
- Donia M.S., Fischbach M.A. // Science. 2015. V. 349. P. 1254766. https://doi.org/10.1126/science.1254766
- Mousa W.K., Athar B., Merwin N.J., Magarvey N.A. // Nat. Prod. Rep. 2017. V. 34. P. 1302–1331. https://doi.org/10.1039/C7NP00021A
- Chiumento S., Roblin C., Kieffer-Jaquinod S., Tachon S., Leprètre C., Basset C., Aditiyarini D., Olleik H., Nicoletti C., Bornet O., Iranzo O., Maresca M., Hardré R., Fons M., Giardina T., Devillard E., Guerlesquin F., Couté Y., Atta M., Perrier J., Lafond M., Duarte V. // Sci. Adv. 2019. V. 5. P. eaaw9969. https://doi.org/10.1126/sciadv.aaw9969
- Barber C.C., Zhang W. // J. Ind. Microbiol. Biotechnol. 2021. V. 48. P. kuab010. https://doi.org/10.1093/jimb/kuab010
- Lewis K. // Cell. 2020. V. 181. P. 29–45. https://doi.org/10.1016/j.cell.2020.02.056
- Pirolo M., Espinosa-Gongora C., Alberdi A., Eisenho- fer R., Soverini M., Eriksen E.Ø., Pedersen K.S., Guardabassi L. // Anim. Microbiome. 2023. V. 5. P. 5. https://doi.org/10.1186/s42523-023-00226-y
- Petrelli S., Buglione M., Rivieccio E., Ricca E., Baccigalupi L., Scala G., Fulgione D. // Anim. Microbiome. 2023. V. 5. P. 14. https://doi.org/10.1186/s42523-023-00235-x
- Vasco K., Guevara N., Mosquera J., Zapata S., Zhang L. // Anim. Microbiome. 2022. V. 4. P. 65. https://doi.org/10.1186/s42523-022-00218-4
- Kauter A., Epping L., Semmler T., Antao E.-M., Kannapin D., Stoeckle S.D., Gehlen H., Lübke-Becker A., Günther S., Wieler L.H., Walther B. // Anim. Microbiome. 2019. V. 1. P. 14. https://doi.org/10.1186/s42523-019-0013-3
- O’Sullivan J.N., Rea M.C., O’Connor P.M., Hill C., Ross R.P. // FEMS Microbiol. Ecol. 2019. V. 95. P. fiy241. https://doi.org/10.1093/femsec/fiy241
- Wertz P.W., De Szalay S. // Antibiotics. 2020. V. 9. P. 159. https://doi.org/10.3390/antibiotics9040159
- O’Sullivan J.N., O’Connor P.M., Rea M.C., O’Sulli- van O., Walsh C.J., Healy B., Mathur H., Field D., Hill C., Ross R.P. // J. Bacteriol. 2020. V. 202. P. e00639-19. https://doi.org/10.1128/JB.00639-19
- O’Neill A.M., Worthing K.A., Kulkarni N., Li F., Nakatsuji T., McGrosso D., Mills R.H., Kalla G., Cheng J.Y., Norris J.M., Pogliano K., Pogliano J., Gonzalez D.J., Gallo R.L. // eLife. 2021. V. 10. P. e66793. https://doi.org/10.7554/eLife.66793
- Swaney M.H., Kalan L.R. // Infect. Immun. 2021. V. 89. P. e00695-20. https://doi.org/10.1128/IAI.00695-20
- Heilbronner S., Krismer B., Brötz-Oesterhelt H., Peschel A. // Nat. Rev. Microbiol. 2021. V. 19. P. 726–739. https://doi.org/10.1038/s41579-021-00569-w
- Terekhov S.S., Smirnov I.V., Malakhova M.V., Samoi- lov A.E., Manolov A.I., Nazarov A.S., Danilov D.V., Dubiley S.A., Osterman I.A., Rubtsova M.P., Kostryukova E.S., Ziganshin R.H., Kornienko M.A., Vanyushkina A.A., Bukato O.N., Ilina E.N., Vlasov V.V., Severinov K.V., Gabibov A.G., Altman S. // PNAS. 2018. V. 115. P. 9551–9556. https://doi.org/10.1073/pnas.1811250115
- Covington B.C., Seyedsayamdost M.R. // J. Am. Chem. Soc. 2022. V. 144. P. 14997–15001. https://doi.org/10.1021/jacs.2c05790
- Egerszegi I., Rátky J., Solti L., Brüssow K.-P. // Arch. Anim. Breed. 2003. V. 46. P. 245–256. https://doi.org/10.5194/aab-46-245-2003
- Breed cards: Mangalitsa (Swallow-Belly Manga- litsa) Pig. https://www.pig333.com/articles/breed-cards-mangalitsa-swallow-belly-mangalitsa-pig_15977/
- Alhede M., Qvortrup K., Liebrechts R., Høiby N., Givskov M., Bjarnsholt T. // FEMS Immunol. Med. Microbiol. 2012. V. 65. P. 335–342. https://doi.org/10.1111/j.1574-695X.2012.00956.x
- Tihlaříková E., Neděla V., Đorđević B. // Sci. Rep. 2019. V. 9. P. 2300. https://doi.org/10.1038/s41598-019-38835-w
- Muscariello L., Rosso F., Marino G., Giordano A., Barbarisi M., Cafiero G., Barbarisi A. // J. Cell. Physiol. 2005. V. 205. P. 328–334. https://doi.org/10.1002/jcp.20444
- Bergmans L., Moisiadis P., Van Meerbeek B., Quirynen M., Lambrechts P. // Int. Endod. J. 2005. V. 38. P. 775–788. https://doi.org/10.1111/j.1365-2591.2005.00999.x
- Grund E., Kroppenstedt R.M. // Int. J. Syst. Evol. Microbiol. 1990. V. 40. P. 5–11. https://doi.org/10.1099/00207713-40-1-5
- Wei Q., Ma L. // Int. J. Mol. Sci. 2013. V. 14. P. 20983– 21005. https://doi.org/10.3390/ijms141020983
- Brandel J., Humbert N., Elhabiri M., Schalk I.J., Mislin G.L.A., Albrecht-Gary A.-M. // Dalton Trans. 2012. V. 41. P. 2820. https://doi.org/10.1039/c1dt11804h
- Abdelaziz A.A., Kamer A.M.A., Al-Monofy K.B., Al-Madboly L.A. // Microb. Cell Fact. 2022. V. 21. P. 262. https://doi.org/10.1186/s12934-022-01988-x
- Brodhagen M., Henkels M.D., Loper J.E. // Appl. Environ. Microbiol. 2004. V. 70. P. 1758–1766. https://doi.org/10.1128/AEM.70.3.1758-1766.2004
- Esposito R., Speciale I., De Castro C., D’Errico G., Russo Krauss I. // Int. J. Mol. Sci. 2023. V. 24. P. 5395. https://doi.org/10.3390/ijms24065395
- Gogineni V., Chen X., Hanna G., Mayasari D., Hamann M.T. // J. Antibiot. (Tokyo). 2020. V. 73. P. 490–503. https://doi.org/10.1038/s41429-020-0321-6
- Masson F., Lemaitre B. // Microbiol. Mol. Biol. Rev. 2020. V. 84. P. e00089-20. https://doi.org/10.1128/MMBR.00089-20
- Olofsson T.C., Butler È., Markowicz P., Lindholm C., Larsson L., Vásquez A. // Int. Wound J. 2016. V. 13. P. 668–679. https://doi.org/10.1111/iwj.12345
- Varijakzhan D., Loh J.-Y., Yap W.-S., Yusoff K., Seboussi R., Lim S.-H.E., Lai K.-S., Chong C.-M. // Marine Drugs. 2021. V. 19. P. 246. https://doi.org/10.3390/md19050246
- Abd-Elgawad M.M.M. // Life. 2022. V. 12. P. 1360. https://doi.org/10.3390/life12091360
- Bassols A., Costa C., Eckersall P.D., Osada J., Sabrià J., Tibau J. // Proteomics Clin. Appl. 2014. V. 8. P. 715–731. https://doi.org/10.1002/prca.201300099
- Heinritz S.N., Mosenthin R., Weiss E. // Nutr. Res. Rev. 2013. V. 26. P. 191–209. https://doi.org/10.1017/S0954422413000152
- Espinosa-Gongora C., Larsen N., Schønning K., Fredholm M., Guardabassi L. // PLoS One. 2016. V. 11. P. e0160331. https://doi.org/10.1371/journal.pone.0160331
- Chlebicz A., Śliżewska K. // Int. J. Environ. Res. Public Health. 2018. V. 15. P. 863. https://doi.org/10.3390/ijerph15050863
- Meurens F., Summerfield A., Nauwynck H., Saif L., Ger- dts V. // Trends Microbiol. 2012. V. 20. P. 50–57. https://doi.org/10.1016/j.tim.2011.11.002
- Gaskins H.R. // In: Swine Nutrition / Eds. Lewis A.J, Southern L.L. CRC Press, 2000. P. 585–609. https://doi.org/10.1201/9781420041842
- Crespo-Piazuelo D., Estellé J., Revilla M., Criado-Mesas L., Ramayo-Caldas Y., Óvilo C., Fernández A.I., Ballester M., Folch J.M. // Sci. Rep. 2018. V. 8. P. 12727. https://doi.org/10.1038/s41598-018-30932-6
- Isaacson R., Kim H.B. // Anim. Health Res. Rev. 2012. V. 13. P. 100–109. https://doi.org/10.1017/S1466252312000084
- Correa-Fiz F., Gonçalves dos Santos J.M., Illas F., Aragon V. // Sci. Rep. 2019. V. 9. P. 6545. https://doi.org/10.1038/s41598-019-43022-y
- Correa-Fiz F., Fraile L., Aragon V. // BMC Genomics. 2016. V. 17. P. 404. https://doi.org/10.1186/s12864-016-2700-8
- Obregon-Gutierrez P., Aragon V., Correa-Fiz F. // Pathogens. 2021. V. 10. P. 697. https://doi.org/10.3390/pathogens10060697
- Correa-Fiz F., Neila-Ibáñez C., López-Soria S., Napp S., Martinez B., Sobrevia L., Tibble S., Aragon V., Migura-Garcia L. // Sci. Rep. 2020. V. 10. P. 20354. https://doi.org/10.1038/s41598-020-77313-6
- Wang T., He Q., Yao W., Shao Y., Li J., Huang F. // Front. Microbiol. 2019. V. 10. P. 1083. https://doi.org/10.3389/fmicb.2019.01083
- Dai H., Chen A., Wang Y., Lu B., Wang Y., Chen J., Huang Y., Li Z., Fang Y., Xiao T., Cai H., Du Z., Wei Q., Kan B., Wang D. // Int. J. Syst. Evol. Microbiol. 2019. V. 69. P. 852–858. https://doi.org/10.1099/ijsem.0.003248
- Matias Rodrigues J.F., Schmidt T.S.B., Tackmann J., Mering C. von // Bioinformatics. 2017. V. 33. P. 3808– 3810. https://doi.org/10.1093/bioinformatics/btx517
- Wang F., Gai Y., Chen M., Xiao X. // Int. J. Syst. Evol. Microbiol. 2009. V. 59. P. 2759–2762. https://doi.org/10.1099/ijs.0.008912-0
- Touchette D., Altshuler I., Gostinčar C., Zalar P., Raymond-Bouchard I., Zajc J., McKay C.P., Gunde-Cimerman N., Whyte L.G. // ISME J. 2022. V. 16. P. 221–232. https://doi.org/10.1038/s41396-021-01030-9
- Raza M., Zhang Z.-F., Hyde K.D., Diao Y.-Z., Cai L. // Fungal Diversity. 2019. V. 99. P. 1–104. https://doi.org/10.1007/s13225-019-00434-5
- Bennur T., Ravi Kumar A., Zinjarde S.S., Javdekar V. // J. Appl. Microbiol. 2016. V. 120. P. 1–16. https://doi.org/10.1111/jam.12950
- Xu D., Nepal K.K., Chen J., Harmody D., Zhu H., McCarthy P.J., Wright A.E., Wang G. // Synth. Syst. Biotechnol. 2018. V. 3. P. 246–251. https://doi.org/10.1016/j.synbio.2018.10.008
- Vela A.I., Sánchez-Porro C., Aragón V., Olvera A., Domínguez L., Ventosa A., Fernández-Garayzábal J.F. // Int. J. Syst. Evol. Microbiol. 2010. V. 60. P. 2446–2450. https://doi.org/10.1099/ijs.0.016626-0
- Vela A.I., Arroyo E., Aragon V., Sanchez-Porro C., Latre M.V., Cerda-Cuellar M., Ventosa A., Dominguez L., Fernandez-Garayzabal J.F. // Int. J. Syst. Evol. Microbiol. 2009. V. 59. P. 671–674. https://doi.org/10.1099/ijs.0.006205-0
- Fusco V., Quero G.M., Cho G.-S., Kabisch J., Meske D., Neve H., Bockelmann W., Franz C.M.A.P. // Front. Microbiol. 2015. V. 6. P. 155. https://doi.org/10.3389/fmicb.2015.00155
- Borgo F., Ballestriero F., Ferrario C., Fortina M.G. // Ann. Microbiol. 2015. V. 65. P. 833–839. https://doi.org/10.1007/s13213-014-0924-x
- Gaaloul N., Ben Braiek, O., Berjeaud J.M., Arthur T., Cavera V.L., Chikindas M.L., Hani K., Ghrairi T. // J. Food Saf. 2014. V. 34. P. 300–311. https://doi.org/10.1111/jfs.12126
- Guarino A., Giannella R., Thompson M.R. // Infect. Immun. 1989. V. 57. P. 649–652. https://doi.org/10.1128/iai.57.2.649-652.1989
- Rieusset L., Rey M., Muller D., Vacheron J., Gerin F., Dubost A., Comte G., Prigent-Combaret C. // Microb. Biotechnol. 2020. V. 13. P. 1562–1580. https://doi.org/10.1111/1751-7915.13598
- Kudo S., Morimoto Y.V., Nakamura S. // Microbiology. 2015. V. 161. P. 701–707. https://doi.org/10.1099/mic.0.000031
- Dickerman A., Bandara A.B., Inzana T.J. // Int. J. Syst. Evol. Microbiol. 2020. V. 70. P. 180–186. https://doi.org/10.1099/ijsem.0.003730
- Fuller A.T., Horton J.M. // J. Gen. Microbiol. 1950. V. 4. P. 417–433. https://doi.org/10.1099/00221287-4-3-417
- Caulier S., Nannan C., Gillis A., Licciardi F., Bragard C., Mahillon J. // Front. Microbiol. 2019. V. 10. P. 302. https://doi.org/10.3389/fmicb.2019.00302
- Tyurin A., Alferova V., Korshun V. // Microorganisms. 2018. V. 6. P. 52. https://doi.org/10.3390/microorganisms6020052
- Björkroth K.J., Schillinger U., Geisen R., Weiss N., Hoste B., Holzapfel W.H., Korkeala H.J., Vandam- me P. // Int. J. Syst. Evol. Microbiol. 2002. V. 52. P. 141–148. https://doi.org/10.1099/00207713-52-1-141
- Fortina M.G., Ricci G., Mora D., Manachini P.L. // Int. J. Syst. Evol. Microbiol. 2004. V. 54. P. 1717–1721. https://doi.org/10.1099/ijs.0.63190-0
- Jančič U., Gorgieva S. // Pharmaceutics. 2021. V. 14. P. 76. https://doi.org/10.3390/pharmaceutics14010076
- Muthukrishnan P., Chithra Devi D., Mostafa A.A., Alsamhary K.I., Abdel-Raouf N., Nageh Sholkamy E. // J. Infect. Public Health. 2020. V. 13. P. 1522–1532. https://doi.org/10.1016/j.jiph.2020.06.025
- Baranova A.A., Chistov A.A., Tyurin A.P., Prokhorenko I.A., Korshun V.A., Biryukov M.V., Alferova V.A., Zakalyukina Y.V. // Microorganisms. 2020. V. 8. P. 1948. https://doi.org/10.3390/microorganisms8121948
- Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 11th Ed. // Clinical and Laboratory Standards Institute (CLSI): Wayne, USA, 2015. https://clsi.org/standards/products/microbiology/documents/m07/
- Performance Standards for Antimicrobial Susceptibility Testing: 25th Informational Supplement // Clinical and Laboratory Standards Institute (CLSI): Wayne, USA, 2015. https://clsi.org/media/1631/m02a12_sample.pdf
- Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 3rd Ed. // Clinical and Laboratory Standards Institute (CLSI): Wayne, USA, 2008. https://clsi.org/media/1461/m27a3_sample.pdf
- Smith A.C., Hussey M.A. // Gram Stain Protocols. American Society for Microbiology, 2005. https://asm.org/getattachment/5c95a063-326b-4b2f-98ce-001de9a5ece3/gram-stain-protocol-2886.pdf
- Glass N.L., Donaldson G.C. // Appl. Environ. Microbiol. 1995. V. 61. P. 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995
- White T.J., Bruns T., Lee S., Taylor J. // In: PCR Protocols. A Guide to Methods and Applications. Academic Press, Cambridge, Massachusetts, U.S., 1990. P. 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Lane D.J., Stackebrandt E., Goodfellow M. // Nucleic Acid Techniques in Bacterial Systematic. Wiley, Hoboken, New Jersey, U.S., 1991.
- Glauert A.M. // Practical Methods in Electron Microscopy. North-Holland Publishing Company, Amsterdam, London, 1974.
- Wang M., Carver J.J., Phelan V.V., Sanchez L.M., Garg N., Peng Y., Nguyen D.D., Watrous J., Kapono C.A., Luzzatto-Knaan T., Porto C., Bouslimani A., Melnik A.V., Meehan M.J., Liu W.-T., Crüsemann M., Boudreau P.D., Esquenazi E., Sandoval-Calderón M., Kersten R.D., Pace L.A., Quinn R.A., Duncan K.R., Hsu C.-C., Floros D.J., Gavilan R.G., Kleigrewe K., Northen T., Dutton R.J., Parrot D., Carlson E.E., Aigle B., Michelsen C.F., Jelsbak L., Sohlenkamp C., Pevzner P., Edlund A., McLean J., Piel J., Murphy B.T., Gerwick L., Liaw C.-C., Yang Y.-L., Humpf H.-U., Maansson M., Keyzers R.A., Sims A.C., Johnson A.R., Sidebottom A.M., Sedio B.E., Klitgaard A., Larson C.B., Boya P C.A., Torres-Mendoza D., Gonzalez D.J., Silva D.B., Marques L.M., Demarque D.P., Pociute E., O’Neill E.C., Briand E., Helfrich E.J.N., Granato- sky E.A., Glukhov E., Ryffel F., Houson H., Mohima- ni H., Kharbush J.J., Zeng Y., Vorholt J.A., Kurita K.L., Charusanti P., McPhail K.L., Nielsen K.F., Vuong L., Elfeki M., Traxler M.F., Engene N., Koyama N., Vin- ing O.B., Baric R., Silva R.R., Mascuch S.J., Tomasi S., Jenkins S., Macherla V., Hoffman T., Agarwal V., Williams P.G., Dai J., Neupane R., Gurr J., Rodrí- guez A.M.C., Lamsa A., Zhang C., Dorrestein K., Duggan B.M., Almaliti J., Allard P.-M., Phapale P., Nothias L.-F., Alexandrov T., Litaudon M., Wolfen- der J.-L., Kyle J.E., Metz T.O., Peryea T., Nguyen D.-T., VanLeer D., Shinn P., Jadhav A., Müller R., Waters K.M., Shi W., Liu X., Zhang L., Knight R., Jensen P.R., Palsson B.Ø., Pogliano K., Linington R.G., Gutiérrez M., Lopes N.P., Gerwick W.H., Moore B.S., Dorrestein P.C., Bandeira N. // Nat. Biotechnol. 2016. V.34. P. 828–837. https://doi.org/10.1038/nbt.3597
Қосымша файлдар
