Synthesis of peptide fragments spike glycoprotein SARS-CoV-2 and studying their binding with human blood cells

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A new method was tested that allows to evaluate activation of the Spike surface protein of SARS-CoV-2 blood leukocytes by synthetic peptides, fragments Lys-Ile-Ala-Asp-Tyr-Asn-Tyr-Lys-Leu (417–425 аа) and Val-Arg-Gln-Ala-Pro-Asn-Gly-Gln-Thr (407–415 аа). It was found that these peptides, regardless of the HLA-A phenotype of the subjects, could bind to leukocytes, which indicates the universality of reactions to peptides, especially in innate immune cells. It was shown that the Lys-Ile-Ala-Asp-Tyr-Asn-Tyr-Lys-Leu peptide contacted the blood leukocytes of the subjects, activated the lymphocytes and basophils of the subjects (statistically significant), which was confirmed by an increase in gamma interferon compared to the Val-Arg-Gln-Ala-Pro-Asn-Gly-Gln-Thr. Thus, this work demonstrates an approach to creating a new peptide vaccine against COVID-19 at the stage of in vitro research.

Толық мәтін

Рұқсат жабық

Авторлар туралы

О. Gribovskaya

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

Хат алмасуға жауапты Автор.
Email: olymelnik@yandex.ru
Белоруссия, ul. Akad. Kuprevicha 5/2, Minsk, 220084

V. Yanchenko

Vitebsk State medical University

Email: olymelnik@yandex.ru
Белоруссия, pr. Frunze 27, Vitebsk, 210023

A. Tsygankov

Vitebsk State medical University

Email: olymelnik@yandex.ru
Ресей, pr. Frunze 27, Vitebsk, 210023

V. Martinovich

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

Email: olymelnik@yandex.ru
Ресей, ul. Akad. Kuprevicha 5/2, Minsk, 220084

Әдебиет тізімі

  1. Mathieu E., Ritchie H., Ortiz-Ospina E., Roser M., Hasell J., Appel C., Giattino Ch., Rodés-Guirao L. // Nat. Hum. Behav. 2021. V. 5. P. 947–953. https://doi.org/10.1038/s41562-021-01122-8
  2. Pollard A.J., Bijker E.M. // Nat. Rev. Immunology. 2021. V. 21. P. 83–100. https://doi.org/10.1038/s41577-020-00479-7
  3. Park J.H., Lee H.K. // Vaccines. 2021. V. 9. P. 524–539. https://doi.org/10.3390/vaccines9050524
  4. Yang H., Cao J., Lin X., Yue J., Zieneldien T., Kim J., Wang L., Fang J., Huang R.-P., Bai Yu., Sneed K., Cao Ch. // Viruses. 2022. V. 14. P. 449–463. https://doi.org/10.3390/v14030449
  5. Heidary M., Kariar V.H., Shirani M., Ghanavati R., Motahar M., Sholeh M., Ghahramanpour H., Khoshnood S. // Front. Microbiol. 2022. V. 13. P. 927306–927306. https://doi.org/10.3389/fmicb.2022.927306
  6. Chiplunkar S., Baravkar A., Paricharak S., Masal A., Aher N. // J. Young. Pharm. 2022. V. 14. P. 133–139.
  7. Triccas J.A., Kint J., Wurm F.M. // NPJ Vaccines. 2022. V. 7. P. 1–2. https://doi.org/10.1038/s41541-022-00507-8
  8. Hanan N., Doud R.L., Jr., Park In-W., Jones H.P., Mathew S.O. // Vaccines. 2021. V. 9. P. 596–613. https://doi.org/10.3390/vaccines9060596
  9. Крит Н.А., Филатова Н.П., Ковальчук О.В., Бесчастная Н.В. // Биоорг. химия. 1981. Т. 7. С. 965–970.
  10. Hermiston M.L., Xu Z., Weiss A. // Annu. Rev. Immunol. 2003. V. 21. P. 107–137. https://doi.org/10.1146/annurev.immunol.21.120601.140946
  11. Sancho D., Gomez M., Sanchez-Madrid F. // Trends Immunol. 2005. V. 26. P. 136–140. https://doi.org/10.1016/j.it.2004.12.006
  12. Gorelik A., Randriamihaja A., Illes K., Nagar B. // FEBS J. 2018. V. 285. P. 2481–2494. https://doi.org/10.1111/febs.14489
  13. Pols M.S., Klumperman J. // Exp. Cell Res. 2009. V. 315. P. 1584–1592. https://doi.org/10.1016/j.yexcr.2008.09.020
  14. Murugesan K., Jagannathan P., Pham Th.D., Pandey S., Bonilla H.F., Jacobson K., Parsonnet J., Andrews J.R., Weiskopf D., Sette A., Pinsky B.A., Singh U., Banaei N. // Clin. Infect. Dis. 2021. V. 73. P. 3130–3132. https://doi.org/doi: 10.1093/cid/ciaa1537
  15. Aiello A., Coppola A., Vanini V., Petrone L., Cuzzi G., Salmi A., Altera A.M.G., Tortorella C., Gualano G., Gasperini C., Scolieri P., Beccacece A., Vita S., Bruzzese V., Lorenzetti R., Palmieri F., Nicastri E., Goletti D. // Int. J. Infect. Dis. 2022. V. 122. P. 841– 849. https://doi.org/10.1016/j.ijid.2022.07.049
  16. Todorovic-Rakovic N., Whitfield J.R. // Cytokine. 2021. V. 146. P. 1537–1556. https://doi.org/10.1016/j.cyto.2021.155637

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Scheme 1. Synthesis of peptide (IX).

Жүктеу (195KB)
3. Scheme 2. Synthesis of peptide (XVIII).

Жүктеу (156KB)

© Russian Academy of Sciences, 2024