Synthesis of peptide fragments spike glycoprotein SARS-CoV-2 and studying their binding with human blood cells

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A new method was tested that allows to evaluate activation of the Spike surface protein of SARS-CoV-2 blood leukocytes by synthetic peptides, fragments Lys-Ile-Ala-Asp-Tyr-Asn-Tyr-Lys-Leu (417–425 аа) and Val-Arg-Gln-Ala-Pro-Asn-Gly-Gln-Thr (407–415 аа). It was found that these peptides, regardless of the HLA-A phenotype of the subjects, could bind to leukocytes, which indicates the universality of reactions to peptides, especially in innate immune cells. It was shown that the Lys-Ile-Ala-Asp-Tyr-Asn-Tyr-Lys-Leu peptide contacted the blood leukocytes of the subjects, activated the lymphocytes and basophils of the subjects (statistically significant), which was confirmed by an increase in gamma interferon compared to the Val-Arg-Gln-Ala-Pro-Asn-Gly-Gln-Thr. Thus, this work demonstrates an approach to creating a new peptide vaccine against COVID-19 at the stage of in vitro research.

Full Text

Restricted Access

About the authors

О. V. Gribovskaya

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

Author for correspondence.
Email: olymelnik@yandex.ru
Belarus, ul. Akad. Kuprevicha 5/2, Minsk, 220084

V. V. Yanchenko

Vitebsk State medical University

Email: olymelnik@yandex.ru
Belarus, pr. Frunze 27, Vitebsk, 210023

A. M. Tsygankov

Vitebsk State medical University

Email: olymelnik@yandex.ru
Russian Federation, pr. Frunze 27, Vitebsk, 210023

V. P. Martinovich

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus

Email: olymelnik@yandex.ru
Russian Federation, ul. Akad. Kuprevicha 5/2, Minsk, 220084

References

  1. Mathieu E., Ritchie H., Ortiz-Ospina E., Roser M., Hasell J., Appel C., Giattino Ch., Rodés-Guirao L. // Nat. Hum. Behav. 2021. V. 5. P. 947–953. https://doi.org/10.1038/s41562-021-01122-8
  2. Pollard A.J., Bijker E.M. // Nat. Rev. Immunology. 2021. V. 21. P. 83–100. https://doi.org/10.1038/s41577-020-00479-7
  3. Park J.H., Lee H.K. // Vaccines. 2021. V. 9. P. 524–539. https://doi.org/10.3390/vaccines9050524
  4. Yang H., Cao J., Lin X., Yue J., Zieneldien T., Kim J., Wang L., Fang J., Huang R.-P., Bai Yu., Sneed K., Cao Ch. // Viruses. 2022. V. 14. P. 449–463. https://doi.org/10.3390/v14030449
  5. Heidary M., Kariar V.H., Shirani M., Ghanavati R., Motahar M., Sholeh M., Ghahramanpour H., Khoshnood S. // Front. Microbiol. 2022. V. 13. P. 927306–927306. https://doi.org/10.3389/fmicb.2022.927306
  6. Chiplunkar S., Baravkar A., Paricharak S., Masal A., Aher N. // J. Young. Pharm. 2022. V. 14. P. 133–139.
  7. Triccas J.A., Kint J., Wurm F.M. // NPJ Vaccines. 2022. V. 7. P. 1–2. https://doi.org/10.1038/s41541-022-00507-8
  8. Hanan N., Doud R.L., Jr., Park In-W., Jones H.P., Mathew S.O. // Vaccines. 2021. V. 9. P. 596–613. https://doi.org/10.3390/vaccines9060596
  9. Крит Н.А., Филатова Н.П., Ковальчук О.В., Бесчастная Н.В. // Биоорг. химия. 1981. Т. 7. С. 965–970.
  10. Hermiston M.L., Xu Z., Weiss A. // Annu. Rev. Immunol. 2003. V. 21. P. 107–137. https://doi.org/10.1146/annurev.immunol.21.120601.140946
  11. Sancho D., Gomez M., Sanchez-Madrid F. // Trends Immunol. 2005. V. 26. P. 136–140. https://doi.org/10.1016/j.it.2004.12.006
  12. Gorelik A., Randriamihaja A., Illes K., Nagar B. // FEBS J. 2018. V. 285. P. 2481–2494. https://doi.org/10.1111/febs.14489
  13. Pols M.S., Klumperman J. // Exp. Cell Res. 2009. V. 315. P. 1584–1592. https://doi.org/10.1016/j.yexcr.2008.09.020
  14. Murugesan K., Jagannathan P., Pham Th.D., Pandey S., Bonilla H.F., Jacobson K., Parsonnet J., Andrews J.R., Weiskopf D., Sette A., Pinsky B.A., Singh U., Banaei N. // Clin. Infect. Dis. 2021. V. 73. P. 3130–3132. https://doi.org/doi: 10.1093/cid/ciaa1537
  15. Aiello A., Coppola A., Vanini V., Petrone L., Cuzzi G., Salmi A., Altera A.M.G., Tortorella C., Gualano G., Gasperini C., Scolieri P., Beccacece A., Vita S., Bruzzese V., Lorenzetti R., Palmieri F., Nicastri E., Goletti D. // Int. J. Infect. Dis. 2022. V. 122. P. 841– 849. https://doi.org/10.1016/j.ijid.2022.07.049
  16. Todorovic-Rakovic N., Whitfield J.R. // Cytokine. 2021. V. 146. P. 1537–1556. https://doi.org/10.1016/j.cyto.2021.155637

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Scheme 1. Synthesis of peptide (IX).

Download (195KB)
3. Scheme 2. Synthesis of peptide (XVIII).

Download (156KB)

Copyright (c) 2024 Russian Academy of Sciences