Participation of the transcription factor CREB1 in the regulation of the Mdh2 gene encoding malate dehydrogenase in the liver of rats with alloxan diabetes
- Authors: Eprintsev A.T.1, Romanenko K.R.1, Selivanova N.V.1
-
Affiliations:
- Voronezh State University
- Issue: Vol 50, No 1 (2024)
- Pages: 26-36
- Section: Articles
- URL: https://archivog.com/0132-3423/article/view/670992
- DOI: https://doi.org/10.31857/S0132342324010034
- EDN: https://elibrary.ru/OWSFEY
- ID: 670992
Cite item
Abstract
The aim of the study was to study the role of transcription factor CREB1 in regulating the expression of the gene encoding the mitochondrial form of malate dehydrogenase (MDH, EC 1.1.1.37) in the liver of rats with experimental diabetes. An increase in the rate of work of NAD-dependent malate dehydrogenase in rat liver cells during the development of experimental diabetes was shown, associated with the activation of the Mdh1 and Mdh2 genes encoding this enzyme. The analysis of the promoters of these genes showed that only in the Mdh2 gene there is a specific binding site with the transcription factor CREB1. It was found that in the liver of rats with pathology, there is an increase in the rate of expression of the gene encoding this transcription factor, which correlates with the expression of the Mdh2 gene. Thus, the data obtained by us confirm the possibility of positive regulation of the rate of the Mdh2 gene by the transcription factor CREB1.
Full Text

About the authors
A. T. Eprintsev
Voronezh State University
Author for correspondence.
Email: bc366@bio.vsu.ru
Russian Federation, Universitetskaya pl. 1, Voronezh, 394018
K. R. Romanenko
Voronezh State University
Email: bc366@bio.vsu.ru
Russian Federation, Universitetskaya pl. 1, Voronezh, 394018
N. V. Selivanova
Voronezh State University
Email: bc366@bio.vsu.ru
Russian Federation, Universitetskaya pl. 1, Voronezh, 394018
References
- Cho N.H., Shaw J.E., Karuranga S., Huang Y., da Rocha Fernandes J.D., Ohlrogge A.W., Malanda B. // Diabetes Res. Clin. Pract. 2018. V. 138. P. 271–281. https://doi.org/10.1016/j.diabres.2018.02.023
- Jiang G., Zhang B.B. // Am. J. Physiol. Endocrinol. Metab. 2003. V. 284. P. E671–Е678. https://doi.org/10.1152/ajpendo.00492.2002
- Priestley J.R.C., Pace L.M., Sen K., Aggarwal A., Alves C.A.P.F., Campbell I.M., Cuddapah S.R., Engelhardt N.M., Eskandar M., García P.C.J., Gropman A., Helbig I., Hong X., Gowda V.K., Lusk L., Trapane P., Srinivasan V.M., Suwannarat P., Ganetzky R.D. // Mol. Genet. Metab. Rep. 2022. V. 33. P. 100931. https://doi.org/10.1016/j.ymgmr.2022.100931
- Zhang L., Ma B., Wang Ch., Chen X., Ruan Y.-L., Yuan Y., Ma F., Li M. // Plant Physiol. 2022. V. 188. P. 2059–2072. https://doi.org/10.1093/plphys/kiac023
- Анастасина М.С., Самбук Е.В. // Вестник Санкт-Петербургского ун-та. 2009. Сер. 3. Вып. 2. С. 39–52.
- Shi Q., Gibson G.E. // J. Neurochem. 2011. V. 118. P. 440–448. https://doi.org/10.1111/j.1471-4159.2011.07333.x
- Кулебякин К.Ю., Акопян Ж.А., Кочегура Т.Н., Пеньков Д.Н. // Сахарный диабет. 2016. Т. 19. С. 190–198. https://doi.org/10.14341/DM2003436-40
- Schmoll D., Wasner C., Hinds C.J., Allan B.B., Walther R., Burchel A. // Biochem. J. 1999. V. 338. P. 457–463.
- Gonzalez G.A., Yamamoto K.K., Fischer W.H., Karr D., Menzel P., Biggs W., Vale W.W., Montminy M.R. // Nature. 1989. V. 337. P. 749–752. https://doi.org/10.1038/337749a0
- Herzig S., Long F., Jhala U.S., Hedrick S., Quinn R., Bauer A., Rudolph D., Schutz G., Yoon C., Puigserver P., Spiegelman B., Montminy M. // Nature. 2001. V. 413. P. 179–183. https://doi.org/10.1038/35093131
- Erion D.M., Ignatova I.D., Yonemitsu S., Nagai Y., Chatterjee P., Weismann D., Hsiao J.J., Zhang D., Iwasaki T., Stark R., Flannery C., Kahn M., Carmean Ch.M., Yu X.X., Murray S.F., Bhanot S., Monia B.P., Cline G.W., Samuel V.T., Shulman G.I. // Cell Metab. 2009. V. 10. P. 499–506. https://doi.org/10.1016/j.cmet.2009.10.007
- Yoon Y.-S., Liu W., de Velde S.V., Matsumura Sh., Wiater E., Huang L., Montminy M. // Commun. Biol. 2021. V. 4. P. 1214. https://doi.org/10.1038/s42003-021-02735-5
- Lenzen S. // Diabetologia. 2008. V. 51. P. 216–226. https://doi.org/10.1007/s00125-007-0886-7
- Епринцев А.Т., Федорин Д.Н., Бакарев М.Ю. // Биомед. химия. 2022. Т. 68. С. 272–278. https://doi.org/10.18097/PBMC20226804272
- Qi L., Saberi M., Zmuda E., Wang Y., Altarejos J., Zhang X., Dentin R., Hedrick S., Bandyopadhyay G., Hai T., Olefsky J., Montminy M. // Cell Metab. 2009. V. 9. P. 277–286. https://doi.org/10.1016/j.cmet.2009.01.006
- Smale S.T., Kadonaga J.T. // Annu. Rev. Biochem. 2003. V. 72. P. 449–479. https://doi.org/10.1146/annurev.biochem.72.121801. 161520
- Ighodaro O.M., Adeosun A.M., Akinloye O.A. // Medicina (Kaunas). 2017. V. 53. P. 365–374. https://doi.org/10.1016/j.medici.2018.02.001
- Jelski W., Laniewska-Dunaj M., Orywal K., Kochanowicz J., Rutkowski R., Szmitkowski M. // Neurochem. Res. 2014. V. 39. P. 2313–2318. https://doi.org/10.1007/s11064-014-1402-3
- Nadeem M.S., Khan J.А., Murtaza B.N., Muhammad Kh., Rauf А. // South Asian J. Life Sci. 2015. V. 3. P. 51–55. https://doi.org/10.14737/journal.sajls/2015/3.2.51.55
- Vennapusa A.R., Somayanda I.M., Doherty C.J., Jagadish S.V.K. // Sci. Rep. 2020. V. 10. P. 16887. https://doi.org/10.1038/s41598-020-73958-5
- Navarro E., Serrano-Heras G., Castaño M.J., Solera J. // Clin. Chim. Acta. 2015. V. 439. P. 231–250. https://doi.org/10.1016/j.cca.2014.10.017
- Dhanasekaran S., Doherty T.M., Kenneth J. // J. Immunol. Methods. 2010. V. 354. P. 34–39. https://doi.org/10.1016/j.jim.2010.01.004
Supplementary files
