Surfactants as a means of delivering a reporter genetic construct based on binase suicide gene to tumor cells
- Autores: Dudkina E.V.1, Vasilieva E.A.2, Ulyanova V.V.1, Zakharova L.Y.2, Ilinskaya O.N.1
-
Afiliações:
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
- Edição: Volume 50, Nº 1 (2024)
- Páginas: 11-25
- Seção: Articles
- URL: https://archivog.com/0132-3423/article/view/670986
- DOI: https://doi.org/10.31857/S0132342324010027
- EDN: https://elibrary.ru/QSMROG
- ID: 670986
Citar
Resumo
Among modern gene therapy methods for combating oncology, suicidal gene therapy based on the delivery of a cytotoxic agent to target cells is of particular importance and promise. As one of such genes, the gene for ribonuclease of Bacillus pumilus 7P, binase, can be considered; the enzyme has a high antitumor potential and low immunogenicity. In addition to the choice of a transgene, another factor influencing the effectiveness of gene therapy is the method of delivering the nucleic acid to target cells. Surfactants have high functional activity and are promising means of delivering therapeutic nucleic acids. The aim of this work was to evaluate the possibility of using geminal surfactants as a means of delivering a genetic construct based on the cytotoxic binase gene into tumor cells. To optimize the transfection conditions, a reporter genetic construct carrying the binase gene fused to the gene for the green fluorescent protein TurboGFP was created, which made it possible to evaluate the delivery efficiency by the fluorescence intensity. To eliminate the toxic effect of binase on recipient cells, the RNase inhibitor gene, barstar, was introduced into the genetic construct. A high complexing ability of geminal surfactants in relation to the reporter system was shown by methods of dynamic light scattering and fluorescence spectroscopy. For surfactant 16-6-16OH, the highest transfecting activity together with a low level of cytotoxicity was found. Thus, the study proved the possibility of using geminal surfactants for the delivery of therapeutic nucleic acids to target cells.
Palavras-chave
Texto integral

Sobre autores
E. Dudkina
Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University
Email: ulyanova_vera@mail.ru
Rússia, ul. Kremlevskaya 18, Kazan 420008
E. Vasilieva
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: ulyanova_vera@mail.ru
Rússia, ul. Akad. Arbuzova 8, Kazan, 420088
V. Ulyanova
Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University
Autor responsável pela correspondência
Email: ulyanova_vera@mail.ru
Rússia, ul. Kremlevskaya 18, Kazan 420008
L. Zakharova
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences
Email: ulyanova_vera@mail.ru
Rússia, ul. Akad. Arbuzova 8, Kazan, 420088
O. Ilinskaya
Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University
Email: ulyanova_vera@mail.ru
Rússia, ul. Kremlevskaya 18, Kazan 420008
Bibliografia
- Maeda H., Khatami M. // Clin. Transl. Med. 2018. V. 7. P. 11. https://doi.org/10.1186/s40169-018-0185-6
- Aiuti A., Roncarolo M.G., Naldini L. // EMBO Mol. Med. 2017. V. 9. P. 737–740. https://doi.org/10.15252/emmm.201707573
- Ye J., Lei J., Fang Q., Shen Y., Xia W., Hu X., Xu Q., Yuan H., Huang J., Ni C. // Front. Oncol. 2019. V. 9. P. 1251. https://doi.org/10.3389/fonc.2019.01251
- Sun W., Shi Q., Zhang H., Yang K., Ke Y, Wang Y., Qiao L. // Discov. Med. 2019. V. 27. P. 45–55.
- Ginn S.L., Amaya A.K., Alexander I.E., Edelstein M., Abedi M.R. // J. Gene Med. 2018. V. 20. P. 1–16. https://doi.org/10.1002/jgm.3015
- Cao G., He X., Sun Q., Chen S., Wan K., Xu X., Feng X., Li P., Chen B., Xiong M. // Front. Oncol. 2020. V. 10. P. 1786. https://doi.org/10.3389/fonc.2020.01786
- Nair J., Nair A., Veerappan S., Sen D. // Cancer Gene Ther. 2020. V. 27. P. 116–124. https://doi.org/10.1038/s41417-019-0116-8
- Makarov A.A., Kolchinsky A., Ilinskaya O.N. // Bioessays. 2008. V. 30. P. 781–790. https://doi.org/10.1002/bies.20789
- Ulyanova V., Vershinina V., Ilinskaya O. // FEBS J. 2011. V. 278. P. 3633–3643. https://doi.org/10.1111/j.1742-4658.2011.08294.x
- Ilinskaya O.N., Zelenikhin P.V., Petrushanko I.Y., Mitkevich V.A., Prassolov V.S., Makarov A.A. // Biochem. Biophys. Res. Commun. 2007. V. 361. P. 1000–1005. https://doi.org/10.1016/j.bbrc.2007.07.143
- Mitkevich V.A., Petrushanko I.Y., Spirin P.V., Fedorova T.V., Kretova O.V. // Cell Cycle. 2011. V. 10. P. 4090–4097. https://doi.org/10.4161/cc.10.23.18210
- Ilinskaya O.N., Singh I., Dudkina E., Ulyanova V., Kayumov A., Barreto G. // Biochim. Biophys. Acta. 2016. V. 1863. P. 1559–1567. https://doi.org/10.1016/j.bbamcr.2016.04.005
- Mironova N.L., Petrushanko I.Y., Patutina O.A., Sen′kova A.V., Simonenko O.V., Mitkevich V.A., Markov O.B., Zenkova M.A., Makarov A.A. // Cell Cycle. 2013. V. 12. P. 2120–2131. https://doi.org/10.4161/cc.25164
- Sung Y.K., Kim S.W. // Biomater. Res. 2019. V. 23. P. 8. https://doi.org/10.1186/s40824-019-0156-z
- Paunovska K., Loughrey D., Dahlman J.E. // Nat. Rev. Genetics. 2022. V. 23. P. 265–280. https://doi.org/10.1038/s41576-021-00439-4
- Hong S.H., Park S.J., Lee S., Cho C.S., Cho M.H. // Expert Opin. Drug Deliv. 2015. V. 12. P. 977–991. https://doi.org/10.1517/17425247.2015.986454
- Bulcha J.T., Wang Y., Ma H., Tai P.W.L., Gao G. // Signal Transduct. Target Ther. 2021. V. 6. P. 53. https://doi.org/10.1038/s41392-021-00487-6
- Zhang B., Yueying Z., Yu D. // Oncol. Rep. 2017. V. 37. P. 937–944. https://doi.org/10.3892/or.2016.5298
- Lee H.Y., Mohammed K.A., Nasreen N. // Am. J. Cancer Res. 2016. V. 6. P. 1118–1134.
- Lee M., Chea K., Pyda R., Chua M., Dominguez I. // J. Biomol. Tech. 2017. V. 28. P. 67–74. https://doi.org/10.7171/jbt.17-2802-003
- Kashapov R., Gaynanova G., Gabdrakhmanov D., Kuznetsov D., Pavlov R., Petrov K., Zakharova L., Sinyashin O. // Int. J. Mol. Sci. 2020. V. 21. P. 6961. https://doi.org/10.3390/ijms21186961
- Kashapov R., Ibragimova A., Pavlov R., Gabdrakhmanov D., Kashapova N., Burilova E., Zakharova L., Sinyashin O. // Int. J. Mol. Sci. 2021. V. 22. P. 7055. https://doi.org/10.3390/ijms22137055
- Gabdrakhmanov D., Vasilieva E., Voronin M., Kuznetsova D., Valeeva F., Mirgorodskaya A., Lukashenko S., Zakharov V., Mukhitov A., Faizullin D., Salnikov V., Syakaev V., Zuev Yu., Latypov Sh., Zakharova L. // J. Phys. Chem. 2020. V. 124. P. 2178–2192.
- Chauhan V., Singh S., Kamboj R., Mishra R., Kaur G. // J. Colloid Interface Sci. 2014. V. 417. P. 385–395. https://doi.org/10.1016/j.jcis.2013.11.059
- Gonçalves R.A., Holmberg K., Lindman B. // J. Mol. Liq. 2023. V. 375. P. 121335. https://doi.org/10.1016/j.molliq.2023.121335
- Gan C., Cheng R., Cai K., Wang X., Xie C., Xu T., Yuan C. // Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2022. V. 267. P. 120606. https://doi.org/10.1016/j.saa.2021.120606
- Massa M., Rivara M., Donofrio G., Cristofolini L., Peracchia E., Compari C., Bacciottini F., Orsi D., Franceschi V., Fisicaro E. // Int. J. Mol. Sci. 2022. V. 23. P. 3062. https://doi.org/10.3390/ijms23063062.
- Dasgupta A., Das P.K., Dias R.S., Miguel M.G., Lindman B., Jadhav V.M., Gnanamani M., Maiti S. // J. Phys. Chem. B. 2007. V. 111. P. 8502–8508. https://doi.org/10.1021/jp068571m.
- Yaseen Z., Rehman S.U., Tabish M., Kabir-ud-Din // J. Mol. Liq. 2014. V. 197. P. 322–327. https://doi.org/10.1016/j.molliq.2014.05.013
- Zarogoulidis P., Darwiche K., Sakkas A., Yarmus L., Huang H., Li Q., Freitag L., Zarogoulidis K., Malecki M. // J. Genet. Syndr. Gene Ther. 2013. V. 4. P. 16849. https://doi.org/10.4172/2157-7412.1000139
- Altanerova U., Jakubechova J., Benejova K., Priscakova P., Pesta M., Pitule P., Topolcan O., Kausitz J., Zduriencikova M., Repiska V., Altaner C. // Int. J. Cancer. 2019. V. 144. P. 897–908. https://doi.org/10.1002/ijc.31792
- Dai L., Yu X., Huang S., Peng Y., Liu J., Chen T., Wang X., Liu Q., Zhu Y., Chen D., Li X., Ou Y., Zou Y., Pan Q., Cao K. // Cancer Biol. Ther. 2021. V. 22. P. 79–87. https://doi.org/10.1080/15384047.2020.1859870
- Qiu Y., Peng G.L., Liu Q.C., Li F.L., Zou X.S., He J.X. // Cancer Lett. 2012. V. 316. P. 31–38. https://doi.org/10.1016/j.canlet.2011.10.015
- Rama Ballesteros A.R., Hernández R., Perazzoli G., Cabeza L., Melguizo C., Vélez C., Prados J. // Cancer Gene Ther. 2020. V. 9. P. 657–668. https://doi.org/10.1038/s41417-019-0137-3
- Baran Y., Ural A.U., Avcu F., Sarper M., Elçi P., Pekel A. // Turk. J. Hematol. 2008. V. 25. P. 172–175.
- Wang Y.J., Shang S.H., Li C.Z. // J. Dent. Sci. 2015. V. 10. P. 414–422.
- Znamenskaya L.V., Vershinina O.A., Vershinina V.I., Leshchinskaya I.B., Hartley R.W. // FEMS Microb. Lett. 1999. V. 173. P. 217–222. https://doi.org/10.1111/j.1574-6968.1999.tb13505.x
- Mirgorodskaya A.B., Bogdanova L.R., Kudryavtseva L.A., Lukashenko S.S., Konovalov A.I. // Russ. J. Gen. Chem. 2008. V. 78. P. 163–170. https://doi.org/10.1134/S1070363208020023
- Zakharova L.Ya., Gabdrakhmanov D.R., Ibragimova A.R., Vasilieva E.A., Nizameev I.R., Kadirov M.K., Ermakova E.A., Gogoleva N.E., Faizullin D.A., Pokrovsky A.G., Korobeynikov V.A., Cheresiz S.V., Zuev Yu.F. // Colloids Surf. B Biointerfaces. 2016. V. 140. P. 269–277. https://doi.org/10.1016/j.colsurfb.2015.12.045
Arquivos suplementares
