Development of a System for Biosynthesis, Isolation and Purification of Holoform of Recombinant Human Neuroglobin and Its Characteristics

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An efficient system for the biosynthesis, isolation and purification of recombinant human neuroglobin has been developed and optimized, which makes it possible to produce protein in quantities sufficient to study its properties. According to UV-visible, IR-, CD-, and NMR spectroscopy data, recombinant neuroglobin is a structured protein in the holoform state. The data of chromato-mass-spectrometric analysis made it possible to conclude that there is a correctly formed disulfide bond in the structure of the oxidized form of the protein. Using Raman and surface-enhanced Raman spectroscopy with laser excitation at 532 nm, it was shown that heme in the reduced and oxidized forms of neuroglobin has vibrational degrees of freedom typical of b-type hemes, and the iron atom is six-coordinated. Using Raman spectroscopy with laser excitation at 633 nm, it was found that reduced –SH-groups were present in reduced neuroglobin, while in oxidized neuroglobin disulfide bridge was formed. The results obtained serve as the basis for detailed studies of the mechanism of the functioning of neuroglobin as a neuroprotector, in particular, during its interaction with oxidized cytochrome c, which is released from mitochondria in violation of their functioning and/or morphology.

About the authors

M. A. Semenova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10

D. A. Dolgikh

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS; Biological Faculty, Lomonosov Moscow State University

Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10; Russia, 119234, Moscow, Leninskie gory 1/12

M. P. Kirpichnikov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS; Biological Faculty, Lomonosov Moscow State University

Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10; Russia, 119234, Moscow, Leninskie gory 1/12

G. V. Maksimov

Biophysics Department, Biological Faculty, Lomonosov Moscow State University

Email: cherita@inbox.ru
Russia, 119234, Moscow, Leninskie gory 1/12

N. A. Brazhe

Biophysics Department, Biological Faculty, Lomonosov Moscow State University

Email: cherita@inbox.ru
Russia, 119234, Moscow, Leninskie gory 1/12

E. V. Bocharov

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10

R. H. Ziganshin

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10

E. Y. Parshina

Biophysics Department, Biological Faculty, Lomonosov Moscow State University

Email: cherita@inbox.ru
Russia, 119234, Moscow, Leninskie gory 1/12

A. A. Ignatova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10

O. M. Smirnova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS

Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10

Z. V. Bochkova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS; Biophysics Department, Biological Faculty, Lomonosov Moscow State University

Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10; Russia, 119234, Moscow, Leninskie gory 1/12

R. V. Chertkova

Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS

Author for correspondence.
Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10

References

  1. Burmester T., Weich B., Reinhardt S., Hankeln T. // Nature. 2000. V. 407. P. 520–523. https://doi.org/10.1038/35035093
  2. Hundahl C.A., Allen G.C., Hannibal J., Kjaer K., Rehfeld J.F., Dewilde S., Nyengaard J.R., Kelsen J., Hay-Schmidt A. // Brain Res. 2010. V. 17. P. 58–73. https://doi.org/10.1016/j.brainres.2010.03.056
  3. Bentmann A., Schmidt M., Reuss S., Wolfrum U., Hankeln T., Burmester T. // J. Biol. Chem. 2005. V. 280. P. 20 660–20 665. https://doi.org/10.1074/jbc.m501338200
  4. Pesce A., Dewilde S., Nardini M., Moens L., Ascenzi P., Hankeln T., Burmester T., Bolognes M. // Structure. 2003. V. 11. P. 1087–1095. https://doi.org/10.1016/s0969-2126(03)00166-7
  5. Dewilde S., Kiger L., Burmester T., Hankeln T., Baudin-Creuza V., Aerts T., Marden M.C., Caubergs R., Moens L. // J. Biol. Chem. 2001. V. 276. P. 38949–38955. https://doi.org/10.1074/jbc.m106438200
  6. Hankeln T., Ebner B., Fuchs C., Gerlach F., Haberkamp M., Laufs T.L., Roesner A., Schmidt M., Weich B., Wystub S., Saaler-Reinhardt S., Reuss S., Bolognesi M., De Sanctis D., Marden M.C., Kiger L., Moens L., Dewilde S., Nevo E., Avivi A., Weber R.E., Fago A., Burmester T. // J. Inorg. Biochem. 2005. V. 99. P. 110–119. https://doi.org/10.1016/j.jinorgbio.2004.11.009
  7. Petersen M.G., Dewilde S., Fago A. // J. Inorg. Biochem. 2008. V. 102. P. 1777–1782. https://doi.org/10.1016/j.jinorgbio.2008.05.008
  8. Tiso M., Tejero J., Basu S., Azarov I., Wang X., Simplaceanu V., Frizzell S., Jayaraman T., Geary L., Shapiro C., Ho C., Shiva S., Kim-Shapiro D.B., Gladwin M.T. // J. Biol. Chem. 2011. V. 286. P. 18 277–18 289. https://doi.org/10.1074/jbc.m110.159541
  9. Brittain T., Skommer J., Henty K., Birch N., Raychaudhuri S. // IUBMB Life. 2010. V. 62. P. 878–885. https://doi.org/10.1002/iub.405
  10. Burmester T., Hankeln T. // Acta Physiol. (Oxf). 2014. V. 211. P. 501–514. https://doi.org/10.1111/apha.12312
  11. Guidolin D., Tortorella C. Marcoli M., Maura G., Agnati L.F. // Int. J. Mol. Sci. 2016. V. 17. P. 1817. https://doi.org/10.3390/ijms17111817
  12. Brittain C., Bommarco R., Vighi M., Barmaz S., Settele J., Potts S.G. // Agricult. For. Entomol. 2010. V. 12. P. 259–266. https://doi.org/10.1111/j.1461-9563.2010.00485.x
  13. Burmester T., Hankeln T. // J. Exp. Biol. 2009. V. 212. P. 1423–1428. https://doi.org/10.1242/jeb.000729
  14. Dewilde S., Mees K., Kiger L., Lechauve C., Marden M.C., Pesce S., Bolognesi M., Moens L. // Methods Enzymol. 2008. V. 436. P. 341–357. https://doi.org/10.1016/s0076-6879(08)36019-4
  15. Belleia M., Bortolottia C.A., Roccoa G.D., Borsarib M., Lancellottib L., Ranieria A., Solaa M., Battistuzzi G. // J. Inorg. Biochem. 2018. V. 178. P. 70–86. https://doi.org/10.1016/j.jinorgbio.2017.10.005
  16. Hamdane D., Kiger L., Dewilde S., Green B.N., Pesce A., Uzan J., Burmester T., Hankeln T., Bolognesi M., Moens L., Marden M.C. // J. Biol. Chem. 2003. V. 278. P. 51713–51721. https://doi.org/10.1074/jbc.m309396200
  17. Fago A., Mathews A.J., Moens L., Dewilde S., Brettain T. // FEBS Lett. 2006. V. 580. P. 4884–4888. https://doi.org/10.1016/j.febslet.2006.08.003
  18. Guimaraes B.G., Hamdane D., Lechauve C., Marden M.C., Golinelli-Pimpaneau B. // Acta Crystallogr. D Biol. Crystallogr. 2014. V. 70. P. 1005–1014. https://doi.org/10.1107/s1399004714000078
  19. Hamdane D., Kiger L., Dewilde S., Green B.N., Pesce A., Uzan J., Burmester T., Hankeln T., Bolognesi M., Moens L., Marden M.C. // Micron. 2004. V. 35. P. 59–62. https://doi.org/10.1016/j.micron.2003.10.019
  20. Lobstein J., Emrich C.A., Jeans C., Faulkner M., Riggs P., Berkmen M. // Microb. Cell Fact. 2012. V. 11. P. 56. https://doi.org/10.1186/1475-2859-11-56
  21. Chao Z., Lianzhi L., Li W., Haiwei J. // Chinese Sci. Bull. 2006. V. 51. P. 2581–2585. https://doi.org/10.1007/s11434-006-2144-7
  22. Kelly S.M., Jess T.J., Price N.C. // Biochim. Biophys. Acta. 2005. V. 1751. P. 119–139. https://doi.org/10.1016/j.bbapap.2005.06.005
  23. Geraci G., Parkhurst L.J. // Methods Enzymol. 1981. V. 76. P. 262–275. https://doi.org/10.1016/0076-6879(81)76127-5
  24. Chertkova R.V., Firsov A.M., Brazhe N.A., Nikelshparg E.I., Bochkova Z.V., Bryntseva T.V., Semenova M.A., Baizhumanov A.A., Kotova E.A., Kirpichnikov M.P., Maksimov G.V., Antonenko Y.N., Dolgikh D.A. // Biomolecules. 2022. V. 12. P. 665. https://doi.org/10.3390/biom12050665
  25. Semenova A.A., Goodilin E.A., Brazhe N.A., Ivanov V.K., Baranchikov A.E., Lebedev V.A., Goldt A.E., Sosnovtseva O.V., Savilov S.V., Egorov A.V., Brazhe A.R., Pershina E.Y., Luneva O.G., Maksimov G.V., Tretyakov Y.D. // J. Mater. Chem. 2012. V. 22. P. 24530–24544. https://doi.org/10.1039/C2JM34686A
  26. Rygula A., Majzner K., Marzec K.M., Kaczor A., Pilarczyk M., Baranska M. // J. Raman Spectrosc. 2013. V. 44. P. 1061–1076. https://doi.org/10.1002/JRS.4335
  27. Brazhe N.A., Treiman M., Brazhe A.R., Find N.L., Maksimov G.V., Sosnovtseva O.V. // PLoS One. V. 7. P. e41990. https://doi.org/10.1371/journal.pone.0041990
  28. Kakita M., Kaliaperumal V., Hamaguchi H. // J. Biophotonics. 2011. V. 5. P. 20–24. https://doi.org/10.1002/jbio.201100087
  29. Buzgar N., Buzatu A., Sanislav I. // An. Stiint. Univ. Al. I. Cuza Iasi. Geol. 2009. V. 55. P. 5–23.
  30. Hu S., Morris I.K., Singh J.P., Smith K.M., Spiro T.G. // J. Am. Chem. Soc. 1993. V. 115. P. 12446–12458. https://doi.org/10.1021/ja00079a028
  31. Brazhe N.A., Treiman M., Faricelli B., Vestergaard J.H., Sosnovtseva O.V. // PLoS One. 2013. V. 8. P. e70488. https://doi.org/10.1371/journal.pone.0070488
  32. Chertkova R.V., Brazhe N.A., Bryntseva T.V., Nekrasov A.N., Dolgikh D.A, Yusipovich A.I., Sosnovtseva O.V., Maksimov G.V., Rubin A.B., Kirpichnikov M.P. // PLoS One. 2017. V. 12. P. e0266695. https://doi.org/10.1371/journal.pone.0266695
  33. Ogawa M., Harada Y., Yamaoka Y., Fujita K., Yaku H., Takamatsu T. // Biochem. Biophys. Res. Commun. 2009. V. 382. P. 370–374. https://doi.org/10.1016/j.bbrc.2009.03.028
  34. Couture M., Burmester T., Hankeln T., Rousseau D.L. // J. Biol. Chem. 2001. V. 276. P. 36377–36382. https://doi.org/10.1074/jbc.m103907200
  35. Couture M., Das T.K., Savard P.Y., Ouellet Y., Wittenberg J.B., Wittenberg B.A., Rousseau D.L., Guertin M. // Eur. J. Biochem. 2000. V. 267. P. 4770–4780. https://doi.org/10.1046/j.1432-1327.2000.01531.x
  36. Bazylewski P., Divigalpitiya R., Fanchini G. // RSC Adv. 2017. V. 7. P. 2964–2970. https://doi.org/10.1039/C6RA25879D
  37. Dong A., Huang P., Caughey W.S. // Biochemistry. 1990. V. 29. P. 3303–3308. https://doi.org/10.1021/bi00465a022
  38. Moss D., Nabedryk E., Breton J., Mantele W. // Eur. J. Biochem. 1990. V. 187. P. 565–572. https://doi.org/10.1111/j.1432-1033.1990.tb15338.x
  39. Sun Y., Benabbas A., Zeng W., Kleingardner J.G., Bren K.L., Champion P.M. // Proc. Natl. Acad. Sci. USA. 2014. V. 111. P. 6570–6575. https://doi.org/10.1073/pnas.1322274111
  40. Venyaminov S.Y., Kalnin N.N. // Biopolymers. 1990. V. 30. P. 1259–1271. https://doi.org/10.1002/bip.360301310
  41. Тен Г.Н., Герасименко А.Ю., Щербакова Н.Е., Баранов В.И. // Изв. Сарат. ун-та. Нов. сер. Сер. Физика. 2019. Т. 19. С. 43–57.
  42. Nucara A., Maselli P., Giliberti V., Carbonaro M. // SpringerPlus. 2013. V. 2. P. 661. https://doi.org/10.1186/2193-1801-2-661
  43. STAT5A (NM_003152) Human Tagged ORF Clone. https://www.origene.com/catalog/cdna-clones/expression-plasmids/rc207482/neuroglobin-ngb-nm_ 021257-human-tagged-orf-clone
  44. Sambrook J., Fritsch E.F., Maniatis T. // Molecular Cloning: a Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Press, 1989.
  45. Nicolis S., Monzani E., Ciaccio C., Ascenzi P., Moens L., Casella L. // Biochem. J. 2007. V. 407. P. 89–99. https://doi.org/10.1042/bj20070372
  46. Kosmachevskaya O.V., Nasybullina E.I., Shumaev K.B., Topunov A.F. // Molecules. 2021. V. 26. P. 7207. https://doi.org/10.3390/molecules26237207
  47. Schagger H., Jagow G. // Anal. Biochem. 1987. V. 166. P. 368–379. https://doi.org/10.1016/0003-2697(87)90587-2
  48. Brazhe A.R. https://github.com/abrazhe/pyraman

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (588KB)
3.

Download (226KB)
4.

Download (175KB)
5.

Download (251KB)
6.

Download (94KB)
7.

Download (91KB)
8.

Download (482KB)

Copyright (c) 2023 М.А. Семенова, Ж.В. Бочкова, О.М. Смирнова, А.А. Игнатова, Е.Ю. Паршина, Р.Х. Зиганшин, Э.В. Бочаров, Н.А. Браже, Г.В. Максимов, М.П. Кирпичников, Д.А. Долгих, Р.В. Черткова