Development of a System for Biosynthesis, Isolation and Purification of Holoform of Recombinant Human Neuroglobin and Its Characteristics
- Authors: Semenova M.A.1, Dolgikh D.A.1,2, Kirpichnikov M.P.1,2, Maksimov G.V.3, Brazhe N.A.3, Bocharov E.V.1, Ziganshin R.H.1, Parshina E.Y.3, Ignatova A.A.1, Smirnova O.M.1, Bochkova Z.V.1,3, Chertkova R.V.1
-
Affiliations:
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS
- Biological Faculty, Lomonosov Moscow State University
- Biophysics Department, Biological Faculty, Lomonosov Moscow State University
- Issue: Vol 49, No 3 (2023)
- Pages: 319-330
- Section: Articles
- URL: https://archivog.com/0132-3423/article/view/670627
- DOI: https://doi.org/10.31857/S013234232303020X
- EDN: https://elibrary.ru/PEAUKB
- ID: 670627
Cite item
Abstract
An efficient system for the biosynthesis, isolation and purification of recombinant human neuroglobin has been developed and optimized, which makes it possible to produce protein in quantities sufficient to study its properties. According to UV-visible, IR-, CD-, and NMR spectroscopy data, recombinant neuroglobin is a structured protein in the holoform state. The data of chromato-mass-spectrometric analysis made it possible to conclude that there is a correctly formed disulfide bond in the structure of the oxidized form of the protein. Using Raman and surface-enhanced Raman spectroscopy with laser excitation at 532 nm, it was shown that heme in the reduced and oxidized forms of neuroglobin has vibrational degrees of freedom typical of b-type hemes, and the iron atom is six-coordinated. Using Raman spectroscopy with laser excitation at 633 nm, it was found that reduced –SH-groups were present in reduced neuroglobin, while in oxidized neuroglobin disulfide bridge was formed. The results obtained serve as the basis for detailed studies of the mechanism of the functioning of neuroglobin as a neuroprotector, in particular, during its interaction with oxidized cytochrome c, which is released from mitochondria in violation of their functioning and/or morphology.
About the authors
M. A. Semenova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS
Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10
D. A. Dolgikh
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS; Biological Faculty, Lomonosov Moscow State University
Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10; Russia, 119234, Moscow, Leninskie gory 1/12
M. P. Kirpichnikov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS; Biological Faculty, Lomonosov Moscow State University
Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10; Russia, 119234, Moscow, Leninskie gory 1/12
G. V. Maksimov
Biophysics Department, Biological Faculty, Lomonosov Moscow State University
Email: cherita@inbox.ru
Russia, 119234, Moscow, Leninskie gory 1/12
N. A. Brazhe
Biophysics Department, Biological Faculty, Lomonosov Moscow State University
Email: cherita@inbox.ru
Russia, 119234, Moscow, Leninskie gory 1/12
E. V. Bocharov
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS
Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10
R. H. Ziganshin
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS
Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10
E. Y. Parshina
Biophysics Department, Biological Faculty, Lomonosov Moscow State University
Email: cherita@inbox.ru
Russia, 119234, Moscow, Leninskie gory 1/12
A. A. Ignatova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS
Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10
O. M. Smirnova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS
Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10
Z. V. Bochkova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS; Biophysics Department, Biological Faculty, Lomonosov Moscow State University
Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10; Russia, 119234, Moscow, Leninskie gory 1/12
R. V. Chertkova
Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, RAS
Author for correspondence.
Email: cherita@inbox.ru
Russia, 117997, Moscow, ul. Miklukho–Maklaya 16/10
References
- Burmester T., Weich B., Reinhardt S., Hankeln T. // Nature. 2000. V. 407. P. 520–523. https://doi.org/10.1038/35035093
- Hundahl C.A., Allen G.C., Hannibal J., Kjaer K., Rehfeld J.F., Dewilde S., Nyengaard J.R., Kelsen J., Hay-Schmidt A. // Brain Res. 2010. V. 17. P. 58–73. https://doi.org/10.1016/j.brainres.2010.03.056
- Bentmann A., Schmidt M., Reuss S., Wolfrum U., Hankeln T., Burmester T. // J. Biol. Chem. 2005. V. 280. P. 20 660–20 665. https://doi.org/10.1074/jbc.m501338200
- Pesce A., Dewilde S., Nardini M., Moens L., Ascenzi P., Hankeln T., Burmester T., Bolognes M. // Structure. 2003. V. 11. P. 1087–1095. https://doi.org/10.1016/s0969-2126(03)00166-7
- Dewilde S., Kiger L., Burmester T., Hankeln T., Baudin-Creuza V., Aerts T., Marden M.C., Caubergs R., Moens L. // J. Biol. Chem. 2001. V. 276. P. 38949–38955. https://doi.org/10.1074/jbc.m106438200
- Hankeln T., Ebner B., Fuchs C., Gerlach F., Haberkamp M., Laufs T.L., Roesner A., Schmidt M., Weich B., Wystub S., Saaler-Reinhardt S., Reuss S., Bolognesi M., De Sanctis D., Marden M.C., Kiger L., Moens L., Dewilde S., Nevo E., Avivi A., Weber R.E., Fago A., Burmester T. // J. Inorg. Biochem. 2005. V. 99. P. 110–119. https://doi.org/10.1016/j.jinorgbio.2004.11.009
- Petersen M.G., Dewilde S., Fago A. // J. Inorg. Biochem. 2008. V. 102. P. 1777–1782. https://doi.org/10.1016/j.jinorgbio.2008.05.008
- Tiso M., Tejero J., Basu S., Azarov I., Wang X., Simplaceanu V., Frizzell S., Jayaraman T., Geary L., Shapiro C., Ho C., Shiva S., Kim-Shapiro D.B., Gladwin M.T. // J. Biol. Chem. 2011. V. 286. P. 18 277–18 289. https://doi.org/10.1074/jbc.m110.159541
- Brittain T., Skommer J., Henty K., Birch N., Raychaudhuri S. // IUBMB Life. 2010. V. 62. P. 878–885. https://doi.org/10.1002/iub.405
- Burmester T., Hankeln T. // Acta Physiol. (Oxf). 2014. V. 211. P. 501–514. https://doi.org/10.1111/apha.12312
- Guidolin D., Tortorella C. Marcoli M., Maura G., Agnati L.F. // Int. J. Mol. Sci. 2016. V. 17. P. 1817. https://doi.org/10.3390/ijms17111817
- Brittain C., Bommarco R., Vighi M., Barmaz S., Settele J., Potts S.G. // Agricult. For. Entomol. 2010. V. 12. P. 259–266. https://doi.org/10.1111/j.1461-9563.2010.00485.x
- Burmester T., Hankeln T. // J. Exp. Biol. 2009. V. 212. P. 1423–1428. https://doi.org/10.1242/jeb.000729
- Dewilde S., Mees K., Kiger L., Lechauve C., Marden M.C., Pesce S., Bolognesi M., Moens L. // Methods Enzymol. 2008. V. 436. P. 341–357. https://doi.org/10.1016/s0076-6879(08)36019-4
- Belleia M., Bortolottia C.A., Roccoa G.D., Borsarib M., Lancellottib L., Ranieria A., Solaa M., Battistuzzi G. // J. Inorg. Biochem. 2018. V. 178. P. 70–86. https://doi.org/10.1016/j.jinorgbio.2017.10.005
- Hamdane D., Kiger L., Dewilde S., Green B.N., Pesce A., Uzan J., Burmester T., Hankeln T., Bolognesi M., Moens L., Marden M.C. // J. Biol. Chem. 2003. V. 278. P. 51713–51721. https://doi.org/10.1074/jbc.m309396200
- Fago A., Mathews A.J., Moens L., Dewilde S., Brettain T. // FEBS Lett. 2006. V. 580. P. 4884–4888. https://doi.org/10.1016/j.febslet.2006.08.003
- Guimaraes B.G., Hamdane D., Lechauve C., Marden M.C., Golinelli-Pimpaneau B. // Acta Crystallogr. D Biol. Crystallogr. 2014. V. 70. P. 1005–1014. https://doi.org/10.1107/s1399004714000078
- Hamdane D., Kiger L., Dewilde S., Green B.N., Pesce A., Uzan J., Burmester T., Hankeln T., Bolognesi M., Moens L., Marden M.C. // Micron. 2004. V. 35. P. 59–62. https://doi.org/10.1016/j.micron.2003.10.019
- Lobstein J., Emrich C.A., Jeans C., Faulkner M., Riggs P., Berkmen M. // Microb. Cell Fact. 2012. V. 11. P. 56. https://doi.org/10.1186/1475-2859-11-56
- Chao Z., Lianzhi L., Li W., Haiwei J. // Chinese Sci. Bull. 2006. V. 51. P. 2581–2585. https://doi.org/10.1007/s11434-006-2144-7
- Kelly S.M., Jess T.J., Price N.C. // Biochim. Biophys. Acta. 2005. V. 1751. P. 119–139. https://doi.org/10.1016/j.bbapap.2005.06.005
- Geraci G., Parkhurst L.J. // Methods Enzymol. 1981. V. 76. P. 262–275. https://doi.org/10.1016/0076-6879(81)76127-5
- Chertkova R.V., Firsov A.M., Brazhe N.A., Nikelshparg E.I., Bochkova Z.V., Bryntseva T.V., Semenova M.A., Baizhumanov A.A., Kotova E.A., Kirpichnikov M.P., Maksimov G.V., Antonenko Y.N., Dolgikh D.A. // Biomolecules. 2022. V. 12. P. 665. https://doi.org/10.3390/biom12050665
- Semenova A.A., Goodilin E.A., Brazhe N.A., Ivanov V.K., Baranchikov A.E., Lebedev V.A., Goldt A.E., Sosnovtseva O.V., Savilov S.V., Egorov A.V., Brazhe A.R., Pershina E.Y., Luneva O.G., Maksimov G.V., Tretyakov Y.D. // J. Mater. Chem. 2012. V. 22. P. 24530–24544. https://doi.org/10.1039/C2JM34686A
- Rygula A., Majzner K., Marzec K.M., Kaczor A., Pilarczyk M., Baranska M. // J. Raman Spectrosc. 2013. V. 44. P. 1061–1076. https://doi.org/10.1002/JRS.4335
- Brazhe N.A., Treiman M., Brazhe A.R., Find N.L., Maksimov G.V., Sosnovtseva O.V. // PLoS One. V. 7. P. e41990. https://doi.org/10.1371/journal.pone.0041990
- Kakita M., Kaliaperumal V., Hamaguchi H. // J. Biophotonics. 2011. V. 5. P. 20–24. https://doi.org/10.1002/jbio.201100087
- Buzgar N., Buzatu A., Sanislav I. // An. Stiint. Univ. Al. I. Cuza Iasi. Geol. 2009. V. 55. P. 5–23.
- Hu S., Morris I.K., Singh J.P., Smith K.M., Spiro T.G. // J. Am. Chem. Soc. 1993. V. 115. P. 12446–12458. https://doi.org/10.1021/ja00079a028
- Brazhe N.A., Treiman M., Faricelli B., Vestergaard J.H., Sosnovtseva O.V. // PLoS One. 2013. V. 8. P. e70488. https://doi.org/10.1371/journal.pone.0070488
- Chertkova R.V., Brazhe N.A., Bryntseva T.V., Nekrasov A.N., Dolgikh D.A, Yusipovich A.I., Sosnovtseva O.V., Maksimov G.V., Rubin A.B., Kirpichnikov M.P. // PLoS One. 2017. V. 12. P. e0266695. https://doi.org/10.1371/journal.pone.0266695
- Ogawa M., Harada Y., Yamaoka Y., Fujita K., Yaku H., Takamatsu T. // Biochem. Biophys. Res. Commun. 2009. V. 382. P. 370–374. https://doi.org/10.1016/j.bbrc.2009.03.028
- Couture M., Burmester T., Hankeln T., Rousseau D.L. // J. Biol. Chem. 2001. V. 276. P. 36377–36382. https://doi.org/10.1074/jbc.m103907200
- Couture M., Das T.K., Savard P.Y., Ouellet Y., Wittenberg J.B., Wittenberg B.A., Rousseau D.L., Guertin M. // Eur. J. Biochem. 2000. V. 267. P. 4770–4780. https://doi.org/10.1046/j.1432-1327.2000.01531.x
- Bazylewski P., Divigalpitiya R., Fanchini G. // RSC Adv. 2017. V. 7. P. 2964–2970. https://doi.org/10.1039/C6RA25879D
- Dong A., Huang P., Caughey W.S. // Biochemistry. 1990. V. 29. P. 3303–3308. https://doi.org/10.1021/bi00465a022
- Moss D., Nabedryk E., Breton J., Mantele W. // Eur. J. Biochem. 1990. V. 187. P. 565–572. https://doi.org/10.1111/j.1432-1033.1990.tb15338.x
- Sun Y., Benabbas A., Zeng W., Kleingardner J.G., Bren K.L., Champion P.M. // Proc. Natl. Acad. Sci. USA. 2014. V. 111. P. 6570–6575. https://doi.org/10.1073/pnas.1322274111
- Venyaminov S.Y., Kalnin N.N. // Biopolymers. 1990. V. 30. P. 1259–1271. https://doi.org/10.1002/bip.360301310
- Тен Г.Н., Герасименко А.Ю., Щербакова Н.Е., Баранов В.И. // Изв. Сарат. ун-та. Нов. сер. Сер. Физика. 2019. Т. 19. С. 43–57.
- Nucara A., Maselli P., Giliberti V., Carbonaro M. // SpringerPlus. 2013. V. 2. P. 661. https://doi.org/10.1186/2193-1801-2-661
- STAT5A (NM_003152) Human Tagged ORF Clone. https://www.origene.com/catalog/cdna-clones/expression-plasmids/rc207482/neuroglobin-ngb-nm_ 021257-human-tagged-orf-clone
- Sambrook J., Fritsch E.F., Maniatis T. // Molecular Cloning: a Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Press, 1989.
- Nicolis S., Monzani E., Ciaccio C., Ascenzi P., Moens L., Casella L. // Biochem. J. 2007. V. 407. P. 89–99. https://doi.org/10.1042/bj20070372
- Kosmachevskaya O.V., Nasybullina E.I., Shumaev K.B., Topunov A.F. // Molecules. 2021. V. 26. P. 7207. https://doi.org/10.3390/molecules26237207
- Schagger H., Jagow G. // Anal. Biochem. 1987. V. 166. P. 368–379. https://doi.org/10.1016/0003-2697(87)90587-2
- Brazhe A.R. https://github.com/abrazhe/pyraman
Supplementary files
