Разработка системы биосинтеза, выделения и очистки холоформы рекомбинантного нейроглобина и его физико-химическая характеристика
- Авторы: Семенова М.А.1, Долгих Д.А.1,2, Кирпичников М.П.1,2, Максимов Г.В.3, Браже Н.А.3, Бочаров Э.В.1, Зиганшин Р.Х.1, Паршина Е.Ю.3, Игнатова А.А.1, Смирнова О.М.1, Бочкова Ж.В.1,3, Черткова Р.В.1
-
Учреждения:
- ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
- Московский государственный университет им. М.В. Ломоносова, биологический факультет
- Московский государственный университет им. М.В. Ломоносова, биологический факультет, кафедра биофизики
- Выпуск: Том 49, № 3 (2023)
- Страницы: 319-330
- Раздел: Статьи
- URL: https://archivog.com/0132-3423/article/view/670627
- DOI: https://doi.org/10.31857/S013234232303020X
- EDN: https://elibrary.ru/PEAUKB
- ID: 670627
Цитировать
Аннотация
Разработана и оптимизирована эффективная система биосинтеза, выделения и очистки рекомбинантного нейроглобина человека, позволяющая наработать белок в количествах, достаточных для исследования его свойств. Согласно данным УФ-видимой, ИК-, КД- и ЯМР-спектроскопии, рекомбинантный нейроглобин представляет собой структурированную холоформу белка. Данные хромато-масс-спектрометрического анализа позволили сделать вывод о наличии в структуре окисленной формы белка правильно замкнутой дисульфидной связи. При помощи спектроскопии комбинационного и гигантского комбинационного рассеяния с лазерным возбуждением 532 нм показано, что гем в восстановленной и окисленной формах нейроглобина имеет колебательные степени свободы, типичные для гемов b-типа, а атом железа гексакоординирован. С использованием спектроскопии комбинационного рассеяния с лазерным возбуждением 633 нм выявлено, что в восстановленном нейроглобине присутствуют восстановленные –SH-группы, которые образуют дисульфидный мостик в окисленном нейроглобине. Полученные результаты служат основой для детальных исследований механизма функционирования нейроглобина в качестве нейропротектора, в частности при его взаимодействии с окисленным цитохромом c, транслоцирующимся из митохондрий в цитозоль при нарушениях их функционирования и/или морфологии.
Ключевые слова
Об авторах
М. А. Семенова
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
Email: cherita@inbox.ru
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10
Д. А. Долгих
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН; Московский государственный университет им. М.В. Ломоносова, биологический факультет
Email: cherita@inbox.ru
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10; Россия, 119234, Москва, Ленинские горы, 1/12
М. П. Кирпичников
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН; Московский государственный университет им. М.В. Ломоносова, биологический факультет
Email: cherita@inbox.ru
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10; Россия, 119234, Москва, Ленинские горы, 1/12
Г. В. Максимов
Московский государственный университет им. М.В. Ломоносова, биологический факультет, кафедра биофизики
Email: cherita@inbox.ru
Россия, 119234, Москва, Ленинские горы, 1/12
Н. А. Браже
Московский государственный университет им. М.В. Ломоносова, биологический факультет, кафедра биофизики
Email: cherita@inbox.ru
Россия, 119234, Москва, Ленинские горы, 1/12
Э. В. Бочаров
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
Email: cherita@inbox.ru
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10
Р. Х. Зиганшин
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
Email: cherita@inbox.ru
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10
Е. Ю. Паршина
Московский государственный университет им. М.В. Ломоносова, биологический факультет, кафедра биофизики
Email: cherita@inbox.ru
Россия, 119234, Москва, Ленинские горы, 1/12
А. А. Игнатова
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
Email: cherita@inbox.ru
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10
О. М. Смирнова
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
Email: cherita@inbox.ru
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10
Ж. В. Бочкова
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН; Московский государственный университет им. М.В. Ломоносова, биологический факультет, кафедра биофизики
Email: cherita@inbox.ru
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10; Россия, 119234, Москва, Ленинские горы, 1/12
Р. В. Черткова
ФГБУН “Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова” РАН
Автор, ответственный за переписку.
Email: cherita@inbox.ru
Россия, 117997, Москва, ул. Миклухо-Маклая, 16/10
Список литературы
- Burmester T., Weich B., Reinhardt S., Hankeln T. // Nature. 2000. V. 407. P. 520–523. https://doi.org/10.1038/35035093
- Hundahl C.A., Allen G.C., Hannibal J., Kjaer K., Rehfeld J.F., Dewilde S., Nyengaard J.R., Kelsen J., Hay-Schmidt A. // Brain Res. 2010. V. 17. P. 58–73. https://doi.org/10.1016/j.brainres.2010.03.056
- Bentmann A., Schmidt M., Reuss S., Wolfrum U., Hankeln T., Burmester T. // J. Biol. Chem. 2005. V. 280. P. 20 660–20 665. https://doi.org/10.1074/jbc.m501338200
- Pesce A., Dewilde S., Nardini M., Moens L., Ascenzi P., Hankeln T., Burmester T., Bolognes M. // Structure. 2003. V. 11. P. 1087–1095. https://doi.org/10.1016/s0969-2126(03)00166-7
- Dewilde S., Kiger L., Burmester T., Hankeln T., Baudin-Creuza V., Aerts T., Marden M.C., Caubergs R., Moens L. // J. Biol. Chem. 2001. V. 276. P. 38949–38955. https://doi.org/10.1074/jbc.m106438200
- Hankeln T., Ebner B., Fuchs C., Gerlach F., Haberkamp M., Laufs T.L., Roesner A., Schmidt M., Weich B., Wystub S., Saaler-Reinhardt S., Reuss S., Bolognesi M., De Sanctis D., Marden M.C., Kiger L., Moens L., Dewilde S., Nevo E., Avivi A., Weber R.E., Fago A., Burmester T. // J. Inorg. Biochem. 2005. V. 99. P. 110–119. https://doi.org/10.1016/j.jinorgbio.2004.11.009
- Petersen M.G., Dewilde S., Fago A. // J. Inorg. Biochem. 2008. V. 102. P. 1777–1782. https://doi.org/10.1016/j.jinorgbio.2008.05.008
- Tiso M., Tejero J., Basu S., Azarov I., Wang X., Simplaceanu V., Frizzell S., Jayaraman T., Geary L., Shapiro C., Ho C., Shiva S., Kim-Shapiro D.B., Gladwin M.T. // J. Biol. Chem. 2011. V. 286. P. 18 277–18 289. https://doi.org/10.1074/jbc.m110.159541
- Brittain T., Skommer J., Henty K., Birch N., Raychaudhuri S. // IUBMB Life. 2010. V. 62. P. 878–885. https://doi.org/10.1002/iub.405
- Burmester T., Hankeln T. // Acta Physiol. (Oxf). 2014. V. 211. P. 501–514. https://doi.org/10.1111/apha.12312
- Guidolin D., Tortorella C. Marcoli M., Maura G., Agnati L.F. // Int. J. Mol. Sci. 2016. V. 17. P. 1817. https://doi.org/10.3390/ijms17111817
- Brittain C., Bommarco R., Vighi M., Barmaz S., Settele J., Potts S.G. // Agricult. For. Entomol. 2010. V. 12. P. 259–266. https://doi.org/10.1111/j.1461-9563.2010.00485.x
- Burmester T., Hankeln T. // J. Exp. Biol. 2009. V. 212. P. 1423–1428. https://doi.org/10.1242/jeb.000729
- Dewilde S., Mees K., Kiger L., Lechauve C., Marden M.C., Pesce S., Bolognesi M., Moens L. // Methods Enzymol. 2008. V. 436. P. 341–357. https://doi.org/10.1016/s0076-6879(08)36019-4
- Belleia M., Bortolottia C.A., Roccoa G.D., Borsarib M., Lancellottib L., Ranieria A., Solaa M., Battistuzzi G. // J. Inorg. Biochem. 2018. V. 178. P. 70–86. https://doi.org/10.1016/j.jinorgbio.2017.10.005
- Hamdane D., Kiger L., Dewilde S., Green B.N., Pesce A., Uzan J., Burmester T., Hankeln T., Bolognesi M., Moens L., Marden M.C. // J. Biol. Chem. 2003. V. 278. P. 51713–51721. https://doi.org/10.1074/jbc.m309396200
- Fago A., Mathews A.J., Moens L., Dewilde S., Brettain T. // FEBS Lett. 2006. V. 580. P. 4884–4888. https://doi.org/10.1016/j.febslet.2006.08.003
- Guimaraes B.G., Hamdane D., Lechauve C., Marden M.C., Golinelli-Pimpaneau B. // Acta Crystallogr. D Biol. Crystallogr. 2014. V. 70. P. 1005–1014. https://doi.org/10.1107/s1399004714000078
- Hamdane D., Kiger L., Dewilde S., Green B.N., Pesce A., Uzan J., Burmester T., Hankeln T., Bolognesi M., Moens L., Marden M.C. // Micron. 2004. V. 35. P. 59–62. https://doi.org/10.1016/j.micron.2003.10.019
- Lobstein J., Emrich C.A., Jeans C., Faulkner M., Riggs P., Berkmen M. // Microb. Cell Fact. 2012. V. 11. P. 56. https://doi.org/10.1186/1475-2859-11-56
- Chao Z., Lianzhi L., Li W., Haiwei J. // Chinese Sci. Bull. 2006. V. 51. P. 2581–2585. https://doi.org/10.1007/s11434-006-2144-7
- Kelly S.M., Jess T.J., Price N.C. // Biochim. Biophys. Acta. 2005. V. 1751. P. 119–139. https://doi.org/10.1016/j.bbapap.2005.06.005
- Geraci G., Parkhurst L.J. // Methods Enzymol. 1981. V. 76. P. 262–275. https://doi.org/10.1016/0076-6879(81)76127-5
- Chertkova R.V., Firsov A.M., Brazhe N.A., Nikelshparg E.I., Bochkova Z.V., Bryntseva T.V., Semenova M.A., Baizhumanov A.A., Kotova E.A., Kirpichnikov M.P., Maksimov G.V., Antonenko Y.N., Dolgikh D.A. // Biomolecules. 2022. V. 12. P. 665. https://doi.org/10.3390/biom12050665
- Semenova A.A., Goodilin E.A., Brazhe N.A., Ivanov V.K., Baranchikov A.E., Lebedev V.A., Goldt A.E., Sosnovtseva O.V., Savilov S.V., Egorov A.V., Brazhe A.R., Pershina E.Y., Luneva O.G., Maksimov G.V., Tretyakov Y.D. // J. Mater. Chem. 2012. V. 22. P. 24530–24544. https://doi.org/10.1039/C2JM34686A
- Rygula A., Majzner K., Marzec K.M., Kaczor A., Pilarczyk M., Baranska M. // J. Raman Spectrosc. 2013. V. 44. P. 1061–1076. https://doi.org/10.1002/JRS.4335
- Brazhe N.A., Treiman M., Brazhe A.R., Find N.L., Maksimov G.V., Sosnovtseva O.V. // PLoS One. V. 7. P. e41990. https://doi.org/10.1371/journal.pone.0041990
- Kakita M., Kaliaperumal V., Hamaguchi H. // J. Biophotonics. 2011. V. 5. P. 20–24. https://doi.org/10.1002/jbio.201100087
- Buzgar N., Buzatu A., Sanislav I. // An. Stiint. Univ. Al. I. Cuza Iasi. Geol. 2009. V. 55. P. 5–23.
- Hu S., Morris I.K., Singh J.P., Smith K.M., Spiro T.G. // J. Am. Chem. Soc. 1993. V. 115. P. 12446–12458. https://doi.org/10.1021/ja00079a028
- Brazhe N.A., Treiman M., Faricelli B., Vestergaard J.H., Sosnovtseva O.V. // PLoS One. 2013. V. 8. P. e70488. https://doi.org/10.1371/journal.pone.0070488
- Chertkova R.V., Brazhe N.A., Bryntseva T.V., Nekrasov A.N., Dolgikh D.A, Yusipovich A.I., Sosnovtseva O.V., Maksimov G.V., Rubin A.B., Kirpichnikov M.P. // PLoS One. 2017. V. 12. P. e0266695. https://doi.org/10.1371/journal.pone.0266695
- Ogawa M., Harada Y., Yamaoka Y., Fujita K., Yaku H., Takamatsu T. // Biochem. Biophys. Res. Commun. 2009. V. 382. P. 370–374. https://doi.org/10.1016/j.bbrc.2009.03.028
- Couture M., Burmester T., Hankeln T., Rousseau D.L. // J. Biol. Chem. 2001. V. 276. P. 36377–36382. https://doi.org/10.1074/jbc.m103907200
- Couture M., Das T.K., Savard P.Y., Ouellet Y., Wittenberg J.B., Wittenberg B.A., Rousseau D.L., Guertin M. // Eur. J. Biochem. 2000. V. 267. P. 4770–4780. https://doi.org/10.1046/j.1432-1327.2000.01531.x
- Bazylewski P., Divigalpitiya R., Fanchini G. // RSC Adv. 2017. V. 7. P. 2964–2970. https://doi.org/10.1039/C6RA25879D
- Dong A., Huang P., Caughey W.S. // Biochemistry. 1990. V. 29. P. 3303–3308. https://doi.org/10.1021/bi00465a022
- Moss D., Nabedryk E., Breton J., Mantele W. // Eur. J. Biochem. 1990. V. 187. P. 565–572. https://doi.org/10.1111/j.1432-1033.1990.tb15338.x
- Sun Y., Benabbas A., Zeng W., Kleingardner J.G., Bren K.L., Champion P.M. // Proc. Natl. Acad. Sci. USA. 2014. V. 111. P. 6570–6575. https://doi.org/10.1073/pnas.1322274111
- Venyaminov S.Y., Kalnin N.N. // Biopolymers. 1990. V. 30. P. 1259–1271. https://doi.org/10.1002/bip.360301310
- Тен Г.Н., Герасименко А.Ю., Щербакова Н.Е., Баранов В.И. // Изв. Сарат. ун-та. Нов. сер. Сер. Физика. 2019. Т. 19. С. 43–57.
- Nucara A., Maselli P., Giliberti V., Carbonaro M. // SpringerPlus. 2013. V. 2. P. 661. https://doi.org/10.1186/2193-1801-2-661
- STAT5A (NM_003152) Human Tagged ORF Clone. https://www.origene.com/catalog/cdna-clones/expression-plasmids/rc207482/neuroglobin-ngb-nm_ 021257-human-tagged-orf-clone
- Sambrook J., Fritsch E.F., Maniatis T. // Molecular Cloning: a Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Press, 1989.
- Nicolis S., Monzani E., Ciaccio C., Ascenzi P., Moens L., Casella L. // Biochem. J. 2007. V. 407. P. 89–99. https://doi.org/10.1042/bj20070372
- Kosmachevskaya O.V., Nasybullina E.I., Shumaev K.B., Topunov A.F. // Molecules. 2021. V. 26. P. 7207. https://doi.org/10.3390/molecules26237207
- Schagger H., Jagow G. // Anal. Biochem. 1987. V. 166. P. 368–379. https://doi.org/10.1016/0003-2697(87)90587-2
- Brazhe A.R. https://github.com/abrazhe/pyraman
Дополнительные файлы
