Data fusion of ultrasonic and thermal nondestructive testing of metal-polymer composite

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Non-destructive testing is an integral part of quality inspection for critical products. The complex structure of metalpolymer hydrogen cylinders makes it difficult to reliably detect defects using a single type of an NDT technique. In this context, the application of hybrid NDT is of interest. This paper considers the combined use of acoustic and thermal techniques of defect detection and the fusion of their results. Experimental verification has shown that the fusion of thermal and acoustic inspection data using the approach developed in this study provides an increase in defect detection compared to the separate use of these types of NDT methods.

Texto integral

Acesso é fechado

Sobre autores

D. Dolmatov

National Research Tomsk Polytechnic University

Autor responsável pela correspondência
Email: dolmatovdo@tpu.ru
Rússia, 634050 Tomsk, 30 Lenin Ave

A. Chulkov

National Research Tomsk Polytechnic University

Email: chulkovao@tpu.ru
Rússia, 634050 Tomsk, 30 Lenin Ave

D. Nesteruk

National Research Tomsk Polytechnic University

Email: nden@tpu.ru
Rússia, 634050 Tomsk, 30 Lenin Ave

E. Kashkarov

National Research Tomsk Polytechnic University

Email: ebk@tpu.ru
Rússia, 634050 Tomsk, 30 Lenin Ave

V. Vavilov

National Research Tomsk Polytechnic University

Email: vavilov@tpu.ru
Rússia, 634050 Tomsk, 30 Lenin Ave

Bibliografia

  1. Fateev V.N., Alekseeva O.K., Korobtsev S.V., Seregina E.A., Fateeva T.V., Grigoriev A.S., Aliev A.Sh.S., Aliev A.Sh. Problems of hydrogen accumulation and storage // Kimya Problemlеri. 2018. No. 4 (16). P. 453—483 (in Russian).
  2. Barthélémy H., Weber M., Barbier F. Hydrogen storage: Recent improvements and industrial perspectives // International J. of Hydrogen Energy. 2017. V. 42 (11). P. 7254—7262 .
  3. Semenischev S.P., Glukhov V.P., Merzlyakov P.P., Kilina O.V., Popov V.K. Manufacturing of metal-composite cylinders (first stage) // Transport on alternative fuel. 2013. No. 3 (33). P. 19—21 (in Russian).
  4. Semenischev S.P., Glukhov V.P., Merzlyakov P.P., Kilina O.V., Popov V.K. Manufacturing of metal-composite cylinders (second stage) // Transport on alternative fuel. 2013. No. 4 (34). P. 52—54 (in Russian).
  5. Boychuk A.S., Dikov I.A., Chertischev V.Y., Generalov A.S., Gorbovets M.A. Ultrasonic control of radius zones of monolithic structures made of carbon fibre-reinforced plastic by a radius phased array and a special mandrel // Proceedings of VIAM. 2023. No. 5 (123). P. 111—123 (in Russian).
  6. Torbali M.E., Zolotas A., Avdelidis N.P. A state-of-the-art review of non-destructive testing image fusion and critical insights on the inspection of aerospace composites towards sustainable maintenance repair operations //Applied Sciences. 2023. V. 13. No 4. Article number: 2732.
  7. Chulkov A.O., Vavilov V.P., Nesteruk D.A., Bedarev A.M., Yarkimbaev S., Shagdyrov B.I. Synthesizing data of active infrared thermography under optical and ultrasonic stimulation of products made of complex-shaped CFRP // Defectoskopiya. 2020. No. 7. P. 54—60.
  8. Bevan R.L., Budyn N., Zhang J., Croxford A.J., Kitazawa S., Wilcox P.D. Data fusion of multiview ultrasonic imaging for characterization of large defects // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2020. V. 67. No. 11. P. 2387—2401.
  9. Petrov I., Vdovenko A., Dolmatov D., Sednev D. The implementation of post-processing algorithm for ultrasonic testing of welds // IOP Conference Series: Materials Science and Engineering. 2019. V. 510. No. 1. Article number: 012004.
  10. Samokrutov A.A., Shevaldykin V.G. Ultrasonic tomography of metal structures using the digitally focused antenna array method // Defectoskopiya. 2011. No 1. P. 21—38.
  11. Zamiela C., Jiang Z., Stokes R., Tian Z., Netchaev A., Dickerson C., Tian W., Bian L. Deep multi-modal U-Net fusion methodology of thermal and ultrasonic images for porosity detection in additive manufacturing // Journ. of Manufacturing Science and Engineering. 2023. V. 145. No. 6. Article number: 061009.
  12. Xiao X., Gao B., yun Tian G., Qing Wang K. Fusion model of inductive thermography and ultrasound for nondestructive testing // Infrared Physics & Technology. 2019. V. 101. P. 162—170.
  13. Yilmaz B., Ba A., Jasiuniene E., Bui H.K., Berthiau G. Evaluation of bonding quality with advanced nondestructive testing (NDT) and data fusion // Sensors. 2020. V. 20 (18). Article number: 5127.
  14. Daryabor P., Safizadeh M.S. Image fusion of ultrasonic and thermographic inspection of carbon/epoxy patches bonded to an aluminum plate // NDT & E International. 2017. V. 90. P. 1—10.
  15. Liu Z., Forsyth D.S., Komorowski J.P., Hanasaki K., Kirubarajan T. Survey: State of the art in NDE data fusion techniques // IEEE transactions on Instrumentation and Measurement. 2007. V. 56. No. 6. P. 2435—2451.
  16. Vorobei V.V., Markin V.B. Quality control of manufacturing and repair technology of composite structures. Novosibirsk: Nauka, 2006. 189 p. (In Russian).
  17. Winfree W.P., Cramer K.E., Zalameda J.N., Howell P.A., Burke E.R. Principal component analysis of thermographic data // Thermosense: thermal infrared applications XXXVII. 2015. V. 9485. P. 211—221.
  18. Shepard S.M., Beemer M.F. Advances in thermographic signal reconstruction // Thermosense: thermal infrared applications XXXVII. 2015. V. 9485. P. 204—210.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Test sample: photograph of the sample (a); diagram of defects (b).

Baixar (388KB)
3. Fig. 2. Laboratory setup for thermal control.

Baixar (351KB)
4. Fig. 3. Laboratory setup for acoustic control.

Baixar (399KB)
5. Fig. 4. Results of TC of the control sample (one-way procedure, heating for 15 s): original thermogram at 40 s (a); PCA image (3rd component) (b); TSR image (1st derivative) (c).

Baixar (379KB)
6. Fig. 5. Results of acoustic testing of the test sample: defect map, depth 2-3 mm (a); defect map, depth 3-4 mm (b); defect map, depth 4-5 mm (c).

Baixar (417KB)
7. Fig. 6. Typical images and signal profiles: original IR thermogram (a); acoustic image, depth range 5-7 mm (b); temperature profile (c); profile of ultrasonic echo signals (d).

Baixar (478KB)
8. Fig. 7. Synthesis of acoustic images and thermograms of a test sample without using threshold values.

Baixar (182KB)
9. Fig. 8. Results of data synthesis using the algorithm with the introduction of thresholds: synthesis of acoustic images (a); synthesis of IR thermograms (b); synthesis of acoustic images and IR thermograms without noise suppression (c); synthesis of acoustic images and IR thermograms with the introduction of noise suppression thresholds (d).

Baixar (185KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024