DETECTION OF METRONIDAZOLE AND FAMPRIDINE BY NMR AT ZERO AND ULTRALOW MAGNETIC FIELD

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work the biocompatible molecules — metronidazole and fampridine — were successfully hyperpolarized using parahydrogen via the signal amplification by reversible exchange approach. The nuclear magnetic resonance (NMR) signals from both molecules were detected at zero- to ultralow magnetic field (ZULF) using commercially available rubidium vapor magnetometer from QuSpin.

About the authors

D. B Burueva

International Tomography Center Siberian Branch of Russian Academy of Sciences

Author for correspondence.
Email: burueva@tomo.nsc.ru
Novosibirsk, Russia

J. Eills

Helmholtz-Institut Mainz; GSI Helmholtzzentrum für Schwerionenforschung GmbH; Institute of Physics, Johannes Gutenberg-Universität

Email: burueva@tomo.nsc.ru
Mainz, Germany; Darmstadt, Germany; Mainz, Germany

R. Picazo-Frutos

Helmholtz-Institut Mainz; GSI Helmholtzzentrum für Schwerionenforschung GmbH; Institute of Physics, Johannes Gutenberg-Universität

Email: burueva@tomo.nsc.ru
Mainz, Germany; Darmstadt, Germany; Mainz, Germany

K. V Kovtunov

International Tomography Center Siberian Branch of Russian Academy of Sciences

Email: burueva@tomo.nsc.ru
Novosibirsk, Russia

D. Budker

Helmholtz-Institut Mainz; GSI Helmholtzzentrum für Schwerionenforschung GmbH; Institute of Physics, Johannes Gutenberg-Universität; Department of Physics, University of California

Email: burueva@tomo.nsc.ru
Mainz, Germany; Darmstadt, Germany; Mainz, Germany; Berkeley, USA

I. V Koptyug

International Tomography Center Siberian Branch of Russian Academy of Sciences

Email: koptyug@tomo.nsc.ru
Novosibirsk, Russia

References

  1. B. Blümich, TrAC Trends in Anal. Chem. 83, 2 (2016).
  2. J. Mitchell, L. F. Gladden, T. C. Chandrasekera et al., Prog. Nucl. Magn. Reson. Spectrosc. 76, 1 (2014).
  3. NMR Logging Applications, in Handbook of Geophysical Exploration: Seismic Exploration, Vol. 32, ed. by K.-J. Dunn, D. J. Bergman, and G. A. Latorraca, Nuclear Magnetic Resonance Petrophysical and Logging Applications, Pergamon (2002), pp. 129–164.
  4. M. P. Augustine, D. M. TonThat, and J. Clarke, Solid State Nucl. Magn. Reson. 11, 139 (1998).
  5. J. Meinel, M. Kwon, R. Maier et al., Commun. Phys. 6, 302 (2023).
  6. I. M. Savukov and M. V. Romalis, Phys. Rev. Lett. 94, 123001 (2005).
  7. M. C. D. Tayler and S. Bodenstedt, J. Magn. Reson. 362, 107665 (2024).
  8. D. B. Burueva, J. Eills, J. W. Blanchard et al., Angew. Chem. Int. Ed. 59, 17026 (2020).
  9. J. Eills, D. Budker, S. Cavagnero et al., Chem. Rev. 123, 1417 (2023).
  10. R. Picazo-Frutos, Q. Stern, J. W. Blanchard et al., Anal. Chem. 95, 720 (2023).
  11. T. Theis, P. Ganssle, G. Kervern et al., Nature Phys. 7, 571 (2011).
  12. C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc. 109, 5541 (1987).
  13. R. W. Adams, J. A. Aguilar, K. D. Atkinson et al., Science 323, 1708 (2009).
  14. D. A. Barskiy, S. Knecht, A. V. Yurkovskaya et al., Prog. Nucl. Magn. Reson. Spectrosc. 114-115, 33(2019).
  15. P. J. Rayner, M. J. Burns, A. M. Olaru et al., Proc. Natl. Acad. Sci. 114, E3188 (2017).
  16. R. V. Shchepin, D. A. Barskiy, D. M. Mikhaylov et al., Bioconjug. Chem. 27, 878 (2016).
  17. H. Zeng, J. Xu, J. Gillen et al., J. Magn. Reson. 237, 73 (2013).
  18. E. J. Fear, A. J. Kennerley, P. J. Rayner et al., Magn. Reson. Med. 88, 11 (2022).
  19. R. V. Shchepin, J. R. Birchall, N. V. Chukanov et al., Chem. Eur. J. 25, 8829 (2019).
  20. O. G. Salnikov, N. V. Chukanov, A. Svyatova et al., Angew. Chem. Int. Ed. 60, 2406 (2021).
  21. H. De Maissin, P. R. Gro, O. Mohiuddin et al., Angew. Chem. Int. Ed. 62, e202306654 (2023).
  22. K. MacCulloch, A. Browning, D. O. Guarin Bedoya et al., J. Magn. Reson. Open 16-17, 100129 (2023).
  23. T. Theis, M. P. Ledbetter, G. Kervern et al., J. Am. Chem. Soc. 134, 3987 (2012).
  24. J. W. Blanchard, B. Ripka, B. A. Suslick et al., Magn. Reson. Chem. 59, 1208 (2021).
  25. P. Put, S. Alcicek, O. Bondar et al., Commun. Chem. 6, 1 (2023).
  26. E. T. Van Dyke, J. Eills, R. Picazo-Frutos et al., Sci. Adv. 8, eabp9242 (2022).
  27. J. Dunn and A. Blight, Curr. Med. Res. Opin. 27, 1415 (2011).
  28. S. A. Dingsdag and N. Hunter, J. Antimicrob. Chemother. 73, 265 (2018).
  29. D. A. Barskiy, R. V. Shchepin, A. M. Coffey et al., J. Am. Chem. Soc. 138, 8080 (2016).
  30. D. O. Guarin, S. M. Joshi, A. Samoilenko et al., Angew. Chem. Int. Ed. 62, e202219181 (2023).
  31. A. I. Trepakova, I. V. Skovpin, N. V. Chukanov et al., J. Phys. Chem. Lett. 13, 10253 (2022).
  32. J. Osborne, J. Orton, O. Alem et al., Proc. SPIE 10548, 105481G (2018).
  33. J. Dupont-Roc, S. Haroche, and C. CohenTannoudji, Phys. Lett. A 28, 638 (1969).
  34. J. W. Blanchard, T. Wu, J. Eills et al., J. Magn. Reson. 314, 106723 (2020).
  35. Q. Stern and K. Sheberstov, Magn. Reson. 4, 87 (2023).
  36. N. V. Chukanov, O. G. Salnikov, I. A. Trofimov et al., ChemPhysChem 22, 960 (2021).
  37. D. A. Barskiy, K. V. Kovtunov, I. V. Koptyug et al., J. Am. Chem. Soc. 136, 3322 (2014).

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences