DETECTION OF METRONIDAZOLE AND FAMPRIDINE BY NMR AT ZERO AND ULTRALOW MAGNETIC FIELD
- Autores: Burueva D.B1, Eills J.2,3,4, Picazo-Frutos R.2,3,4, Kovtunov K.V1, Budker D.2,3,4,5, Koptyug I.V1
-
Afiliações:
- International Tomography Center Siberian Branch of Russian Academy of Sciences
- Helmholtz-Institut Mainz
- GSI Helmholtzzentrum für Schwerionenforschung GmbH
- Institute of Physics, Johannes Gutenberg-Universität
- Department of Physics, University of California
- Edição: Volume 166, Nº 4 (2024)
- Páginas: 566-570
- Seção: Articles
- URL: https://archivog.com/0044-4510/article/view/653821
- DOI: https://doi.org/10.31857/S0044451024100134
- ID: 653821
Citar
Resumo
In this work the biocompatible molecules — metronidazole and fampridine — were successfully hyperpolarized using parahydrogen via the signal amplification by reversible exchange approach. The nuclear magnetic resonance (NMR) signals from both molecules were detected at zero- to ultralow magnetic field (ZULF) using commercially available rubidium vapor magnetometer from QuSpin.
Sobre autores
D. Burueva
International Tomography Center Siberian Branch of Russian Academy of Sciences
Autor responsável pela correspondência
Email: burueva@tomo.nsc.ru
Novosibirsk, Russia
J. Eills
Helmholtz-Institut Mainz; GSI Helmholtzzentrum für Schwerionenforschung GmbH; Institute of Physics, Johannes Gutenberg-Universität
Email: burueva@tomo.nsc.ru
Mainz, Germany; Darmstadt, Germany; Mainz, Germany
R. Picazo-Frutos
Helmholtz-Institut Mainz; GSI Helmholtzzentrum für Schwerionenforschung GmbH; Institute of Physics, Johannes Gutenberg-Universität
Email: burueva@tomo.nsc.ru
Mainz, Germany; Darmstadt, Germany; Mainz, Germany
K. Kovtunov
International Tomography Center Siberian Branch of Russian Academy of Sciences
Email: burueva@tomo.nsc.ru
Novosibirsk, Russia
D. Budker
Helmholtz-Institut Mainz; GSI Helmholtzzentrum für Schwerionenforschung GmbH; Institute of Physics, Johannes Gutenberg-Universität; Department of Physics, University of California
Email: burueva@tomo.nsc.ru
Mainz, Germany; Darmstadt, Germany; Mainz, Germany; Berkeley, USA
I. Koptyug
International Tomography Center Siberian Branch of Russian Academy of Sciences
Email: koptyug@tomo.nsc.ru
Novosibirsk, Russia
Bibliografia
- B. Blümich, TrAC Trends in Anal. Chem. 83, 2 (2016).
- J. Mitchell, L. F. Gladden, T. C. Chandrasekera et al., Prog. Nucl. Magn. Reson. Spectrosc. 76, 1 (2014).
- NMR Logging Applications, in Handbook of Geophysical Exploration: Seismic Exploration, Vol. 32, ed. by K.-J. Dunn, D. J. Bergman, and G. A. Latorraca, Nuclear Magnetic Resonance Petrophysical and Logging Applications, Pergamon (2002), pp. 129–164.
- M. P. Augustine, D. M. TonThat, and J. Clarke, Solid State Nucl. Magn. Reson. 11, 139 (1998).
- J. Meinel, M. Kwon, R. Maier et al., Commun. Phys. 6, 302 (2023).
- I. M. Savukov and M. V. Romalis, Phys. Rev. Lett. 94, 123001 (2005).
- M. C. D. Tayler and S. Bodenstedt, J. Magn. Reson. 362, 107665 (2024).
- D. B. Burueva, J. Eills, J. W. Blanchard et al., Angew. Chem. Int. Ed. 59, 17026 (2020).
- J. Eills, D. Budker, S. Cavagnero et al., Chem. Rev. 123, 1417 (2023).
- R. Picazo-Frutos, Q. Stern, J. W. Blanchard et al., Anal. Chem. 95, 720 (2023).
- T. Theis, P. Ganssle, G. Kervern et al., Nature Phys. 7, 571 (2011).
- C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc. 109, 5541 (1987).
- R. W. Adams, J. A. Aguilar, K. D. Atkinson et al., Science 323, 1708 (2009).
- D. A. Barskiy, S. Knecht, A. V. Yurkovskaya et al., Prog. Nucl. Magn. Reson. Spectrosc. 114-115, 33(2019).
- P. J. Rayner, M. J. Burns, A. M. Olaru et al., Proc. Natl. Acad. Sci. 114, E3188 (2017).
- R. V. Shchepin, D. A. Barskiy, D. M. Mikhaylov et al., Bioconjug. Chem. 27, 878 (2016).
- H. Zeng, J. Xu, J. Gillen et al., J. Magn. Reson. 237, 73 (2013).
- E. J. Fear, A. J. Kennerley, P. J. Rayner et al., Magn. Reson. Med. 88, 11 (2022).
- R. V. Shchepin, J. R. Birchall, N. V. Chukanov et al., Chem. Eur. J. 25, 8829 (2019).
- O. G. Salnikov, N. V. Chukanov, A. Svyatova et al., Angew. Chem. Int. Ed. 60, 2406 (2021).
- H. De Maissin, P. R. Gro, O. Mohiuddin et al., Angew. Chem. Int. Ed. 62, e202306654 (2023).
- K. MacCulloch, A. Browning, D. O. Guarin Bedoya et al., J. Magn. Reson. Open 16-17, 100129 (2023).
- T. Theis, M. P. Ledbetter, G. Kervern et al., J. Am. Chem. Soc. 134, 3987 (2012).
- J. W. Blanchard, B. Ripka, B. A. Suslick et al., Magn. Reson. Chem. 59, 1208 (2021).
- P. Put, S. Alcicek, O. Bondar et al., Commun. Chem. 6, 1 (2023).
- E. T. Van Dyke, J. Eills, R. Picazo-Frutos et al., Sci. Adv. 8, eabp9242 (2022).
- J. Dunn and A. Blight, Curr. Med. Res. Opin. 27, 1415 (2011).
- S. A. Dingsdag and N. Hunter, J. Antimicrob. Chemother. 73, 265 (2018).
- D. A. Barskiy, R. V. Shchepin, A. M. Coffey et al., J. Am. Chem. Soc. 138, 8080 (2016).
- D. O. Guarin, S. M. Joshi, A. Samoilenko et al., Angew. Chem. Int. Ed. 62, e202219181 (2023).
- A. I. Trepakova, I. V. Skovpin, N. V. Chukanov et al., J. Phys. Chem. Lett. 13, 10253 (2022).
- J. Osborne, J. Orton, O. Alem et al., Proc. SPIE 10548, 105481G (2018).
- J. Dupont-Roc, S. Haroche, and C. CohenTannoudji, Phys. Lett. A 28, 638 (1969).
- J. W. Blanchard, T. Wu, J. Eills et al., J. Magn. Reson. 314, 106723 (2020).
- Q. Stern and K. Sheberstov, Magn. Reson. 4, 87 (2023).
- N. V. Chukanov, O. G. Salnikov, I. A. Trofimov et al., ChemPhysChem 22, 960 (2021).
- D. A. Barskiy, K. V. Kovtunov, I. V. Koptyug et al., J. Am. Chem. Soc. 136, 3322 (2014).
Arquivos suplementares
