Application of a composite based on magnetite nanoparticles, graphene oxide and ionic liquid for the extraction of bisphenol A from bottom sediments by matrix solid-phase dispersion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A composite based on Fe3O4 nanoparticles, graphene oxide and ionic liquid (1-butyl-3-methylimidazolium-2-carboxylate) is proposed as a sorbent for the extraction of bisphenol A (BPA) from bottom sediments by matrix solid-phase dispersion (MSPD). The saturation magnetization of the synthesized sorbent was 34 emu/g. Grinding of bottom sediments and subsequent grinding with the sorbent was carried out in a ball mill. Some stages of MSPD are partially automated, in particular the procedures of magnetic separation, BPA desorption and sorbent regeneration. The degree of extraction of BPA under experimentally selected conditions (sorbent weight is 0.5 g, the time required for grinding the sorbent is 5 minutes) is 94%. The sorbent can withstand four sorption-desorption cycles without loss of sorption capacity. To clean the matrix from interfering influences, washing with n-heptane is proposed. Bisphenol A was determined by gas chromatography-mass spectrometry after derivatization with acetic anhydride. The analytical characteristics of the method were established using model samples of bottom sediments that artificially polluted BPA. The limit of determination by the developed method was 0.1 μm/kg, the linearity interval of the calibration graph was 0.3–12 μm/kg (r2 = 0.994). The bottom sediments selected near the discharge of the Voronezh wastewater treatment plants (Voronezh River and Don River) were used as real objects for analysis. The concentration of BPA in bottom sediments was 3.83–6.52 μm/kg.

Full Text

Restricted Access

About the authors

A. S. Gubin

Voronezh State University of Engineering Technologies

Author for correspondence.
Email: goubinne@mail.ru
Russian Federation, Revolution Ave., 19, Voronezh, 394036

P. T. Sukhanov

Voronezh State University of Engineering Technologies

Email: goubinne@mail.ru
Russian Federation, Revolution Ave., 19, Voronezh, 394036

A. A. Kushnir

Voronezh State University of Engineering Technologies

Email: goubinne@mail.ru
Russian Federation, Revolution Ave., 19, Voronezh, 394036

References

  1. Barker S.A., Long A.R., Short C.R. Isolation of drug residues from tissues by solid phase dispersion // J. Chromatogr. 1989. V. 475. P. 353. https://doi.org/10.1016/s0021-9673(01)89689-8
  2. Barker S.A. Matrix solid phase dispersion (MSPD) // J. Biochem. Biophys. Methods. 2007. V. 70. № 2. P. 151. https://doi.org/10.1016/j.jbbm.2006.06.005
  3. Wang G.N., Zhang L., Song Y.P., Liu J.X., Wang J.P. Application of molecularly imprinted polymer based matrix solid phase dispersion for determination of fluoroquinolones, tetracyclines and sulfonamides in meat // J. Chromatogr. B. 2017. V. 1065. P. 104. https://doi.org/10.1016/j.jchromb.2017.09.034
  4. Liu H., Hong Y., Chen L. Molecularly imprinted polymers coated on carbon nanotubes for matrix solid phase dispersion extraction of camptothecin from Camptotheca acuminate // Anal. Methods. 2015. V. 7. P. 8100. https://doi.org/10.1039/C5AY01721A
  5. Arabi M., Ghaedi M., Ostovan A. Development of dummy molecularly imprinted based on functionalized silica nanoparticles for determination of acrylamide in processed food by matrix solid phase dispersion // Food Chem. 2016. V. 210. P. 78. https://doi.org/10.1016/j.foodchem.2016.04.080
  6. Peng L.Q., Yi L., Yang Q.C., Cao J., Du L.J., Zhang Q.D. Graphene nanoplatelets based matrix solid-phase dispersion microextraction for phenolic acids by ultrahigh performance liquid chromatography with electrochemical detection // Sci. Rep. 2017. V. 7. P. 7496. https://doi.org/10.1038/s41598-017-07840-2
  7. Sun T., Li X., Yang J., Li L., Jin Y., Shi X. Graphene-encapsulated silica as matrix solid-phase dispersion extraction sorbents for the analysis of poly-methoxylated flavonoids in the leaves of Murraya panaculata (L.) Jack // J. Sep. Sci. 2015. V. 38. P. 2132. https://doi.org/10.1002/jssc.201500002
  8. Cao J., Peng L.Q., Xu J.J., Du L.J., Zhang Q.D. Simultaneous microextraction of inorganic iodine and iodinated amino acids by miniaturized matrix solid-phase dispersion with molecular sieves and ionic liquids // J. Chromatogr. A. 2016. V. 1477. P. 1. https://doi.org/10.1016/j.chroma.2016.11.053
  9. Peng L.Q., Li Q., Chang Y.X., An M., Yang R., Tan Z., Hao J., Cao J., Xu J.J., Hu S.S. Determination of natural phenols in olive fruits by chitosan assisted matrix solid-phase dispersion microextraction and ultrahigh performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry // J. Chromatogr. A. 2016. V. 1456. P. 68. https://doi.org/10.1016/j.chroma.2016.06.011
  10. Yan C, Zhang Y, Du K., Guo J., He J., Li J., Chang Y. A ball mill-assisted vortex-enhanced matrix solid-phase dispersion method for the extraction and determination of five phenolic compounds from Rubi Fructus by high-performance liquid chromatography // Sep. Sci. Plus. 2021. V. 4. P. 211. https://doi.org/10.1002/sscp.202000110
  11. Jin L., Chunhong J., Xiaoliang L., Xuesheng L., Haiyan W., Dongqiang Z. Fe3O4 nanoparticles as matrix solid-phase dispersion extraction adsorbents for the analysis of thirty pesticides in vegetables by ultrahigh-performance liquid chromatography-tandem mass spectrometry // J. Chromatogr. B. 2021. V. 1165. Article 122532. https://doi.org/10.1016/j.jchromb.2021.122532
  12. Tu X., Chen W. A review on the recent progress in matrix solid phase dispersion // Molecules. 2018. V. 23. № 11. Article 2767. https://doi.org/10.3390/molecules23112767
  13. Yu X., Yang H.S. Pyrethroid residue determination in organic and conventional vegetables using liquid-solid extraction coupled with magnetic solid phase extraction based on polystyrene-coated magnetic nanoparticles // Food Chem. 2017. V. 217. P. 303. https://doi.org/10.1016/j.foodchem.2016.08.115
  14. Fotouhi M., Seidi S., Shanehsaz M., Naseri M.T. Magnetically assisted matrix solid phase dispersion for extraction of parabens from breast milks // J. Chromatogr. A. 2017. V. 1504. P. 17. https://doi.org/10.1016/j.chroma.2017.05.009
  15. Fraga T., Carvalho M., Ghislandi M., Motta M. Functionalized graphene-based materials as innovative adsorbents of organic pollutants: a concise overview // Braz. J. Chem. Engin. 2019. V. 36. P. 1. https://doi.org/10.1590/0104-6632.20190361s20180283
  16. Wang J., Yu S., Zhao Y., Wang X., Wen T., Yang T., Ai Y., Chen Y., Hayat T., Alsaedi A., Wang X. Experimental and theoretical studies of ZnO and MgO for the rapid coagulation of graphene oxide from aqueous solutions // Sep. Purif. Technol. 2017. V. 184. P. 88. https://doi.org/10.1016/j. seppur.2017.03.058
  17. Gholami-Bonabi L., Ziaefar N., Sheikhloie H. Removal of phenol from aqueous solutions by magnetic oxide graphene nanoparticles modified with ionic liquids using the Taguchi optimization approach // Water Sci. Technol. 2020. V. 81. № 2. P. 228. https://doi.org/10.2166/wst.2020.082
  18. Halden R.U. Plastics and health risks // Ann. Rev. Public Health. 2010. V. 31. № 1. P. 179. https://doi.org/10.1146/annurev.publhealth.012809.103714
  19. Caballero-Casero N., Lunar L., Rubio S. Analytical methods for the determination of mixtures of bisphenols and derivatives in human and environmental exposure sources and biological fluids. A review // Anal. Chim. Acta. 2016. V. 908. P. 22. https://doi.org/10.1016/j.aca.2015.12.034
  20. Амосов А.С., Ульяновский Н.В., Косяков Д.С. Одновременное определение антрахинона и бисфенола А в целлюлозно-бумажной продукции методом высокоэффективной жидкостной хроматографии-тандемной масс-спектрометрии // Журн. аналит. химии. 2019. Т. 74. № 11. С. 810. (Amosov A.S., Ul’yanovskii N.V., Kosyakov D.S. Simultaneous determination of anthraquinone and bisphenol a in pulp and paper products by high performance liquid chromatography‒tandem mass spectrometry // J. Anal. Chem. 2019. V. 74. P. 1089.) https://doi.org/10.1134/S1061934819110029
  21. Ma Y., Liu H., Wu J., Yuan L., Wang Y., Du X., Wang R., Marwa P.W., Petlulu P., Chen X., Zhang H. The adverse health effects of bisphenol A and related toxicity mechanisms // Environ. Res. 2019. V. 176. Article 108575. https://doi.org/10.1016/j.envres.2019.108575
  22. Ghahremani M.-H., Ghazi-Khansari M., Farsi Z., Yazdanfar N., Jahanbakhsh M., Sadighara P. Bisphenol A in dairy products, amount, potential risks, and the various analytical methods, a systematic review // Food Chem: X. 2024. V. 21. Article 101142. https://doi.org/10.1016/j.fochx.2024.101142
  23. Farahin Mohd Ali N., Sajid M., Ibrahim Thani Abd Halim W., Husaini Mohamed A., Nadhirah Mohamad Zain N., Kamaruzaman S., Suhaila Mohamad Hanapi N., Nazihah Wan Ibrahim W., Yahaya N. Recent advances in solid phase extraction methods for the determination of bisphenol A and its analogues in environmental matrices: An updated review // Microchem. J. 2023. V. 184. Article 108158. https://doi.org/10.1016/j.microc.2022.108158
  24. Xu X., Wang Y., Li X. Sorption behavior of bisphenol A on marine sediments // J. Environ. Sci. Health A. 2008. V. 43. № 3. P. 239. https://doi.org/10.1080/10934520701792696
  25. Song M.Y., Xu Y., Jiang Q.T., Lam P.K. S., O’Toole D.K., Giesy J.P., Jiang G.B. Measurement of estrogenic activity in sediments from Haihe and Dagu River China // Environ. Int. 2006. V. 32. № 5. P. 676. https://doi.org/10.1016/j.envint.2006.03.002
  26. Dorival-Garcia N., Zafra-Gomez A., Navalon A., Vilchez J.L. Analysis of bisphenol A and its chlorinated derivatives in sewage sludge samples. Comparison of the efficiency of three extraction techniques // J. Chromatogr. A. 2012. V. 1253. P. 1. https://doi.org/10.1016/j.chroma.2012.06.079
  27. Xu J., Wu L., Chen W., Chang A.C. Simultaneous determination of pharmaceuticals, endocrine disrupting compounds and hormone in soils by gas chromatography-mass spectrometry // J. Chromatogr. A. 2008. V. 1202. № 2. P. 189. https://doi.org/10.1016/j.chroma.2008.07.001
  28. Caballero-Casero N., Lunar L., Rubio S. Analytical methods for the determination of mixtures of bisphenols and derivatives in human and environmental exposure sources and biological fluids. A review // Anal. Chim. Acta. 2016. V. 908. P. 22. https://doi.org/10.1016/j.aca.2015.12.034
  29. Gubin A.S., Sukhanov P.T., Kushnir A.A., Shikhaliev K.S., Potapov M.A., Kovaleva E.N. Ionic-liquid-modified magnetite nanoparticles for MSPE-GC-MS determination of 2,4-D butyl ester and its metabolites in water, soil, and bottom sediments // Environ. Nanotechnol. Monit. Manag. 2022. V. 17. Article 100652. https://doi.org/10.1016/j.enmm.2022.100652
  30. Voutchkova A.M., Feliz M., Clot E., Eisenstein O., Crabtree R.H. Imidazolium Carboxylates as versatile and selective n-heterocyclic carbene transfer agents: synthesis, mechanism, and applications // J. Am. Chem. Soc. 2007. V. 129. № 42. P. 12834. https://doi.org/10.1021/ja0742885
  31. Holbrey J.D., Reichert W.M., Tkatchenko I., Bouajila E., Walter O., Tommasi I., Rogers R.D. 1,3-Dimethylimidazolium-2-carboxylate: the unexpected synthesis of an ionic liquid precursor and carbene-CO2 adduct // Chem. Commun. 2002. V. 1. P. 28. https://doi.org/10.1039/b211519k
  32. Губин А.С., Суханов П.Т., Кушнир А.А. Применение магнитного сорбента на основе сверхсшитого полистирола в сочетании с газовой хроматографией-масс-спектрометрией для определения хлорфенолов в рыбе пресноводного водоема // Журн. аналит. химии. 2023. Т. 78. № 5. С. 427. (Gubin A.S., Sukhanov P.T. Kushnir A.A. Using a magnetic sorbent based on hypercrosslinked polystyrene in combination with gas chromatography–mass spectrometry for the determination of chlorophenols in freshwater fish // J. Anal. Chem. 2023. V. 78. P. 582.) https://doi.org/10.1134/S1061934823050064
  33. Cai M.Q., Su J., Hu J.Q., Wang Q., Dong C.Y., Pan S.D., Jin M.C. Planar graphene oxide-based magnetic ionic liquid nanomaterial for extraction of chlorophenols from environmental water samples coupled with liquid chromatography-tandem mass spectrometry // J. Chromatogr. A. 2016. V. 1459. P. 38. https://doi.org/10.1016/j.chroma.2016.06.086
  34. Gubin A.S., Sukhanov P.T., Kushnir A.A. Magnetic sorbent modified by humate for the extraction of alkylphenols, bisphenol A and estradiol // Mendeleev Commun. 2023. V. 33. № 2. P. 285. https://doi.org/10.1016/j.mencom.2023.02.044
  35. Sengupta I., Suddhapalli S., Pal S., Chakraborty S. Characterization of structural transformation of graphene oxide to reduced graphene oxide during thermal annealing // J. Mater. Res. 2020. V. 35. P. 1197. https://doi.org/10.1557/jmr.2020.55
  36. Jiang B., Yang K., Zhao Q., Wu Q., Liang Z., Zhang L., Peng X., Zhang Y. Hydrophilic immobilized trypsin reactor with magnetic graphene oxide as support for high efficient proteome digestion // J. Chromatogr. A. 2012. V. 1254. P. 8. https://doi.org/10.1016/j.chroma.2012.07.030
  37. Gubin A.S, Sukhanov P.T., Kushnir A.A., Shikhaliev Kh.S, Potapov M.A., Kovaleva E.N. Monitoring of phenols in natural waters and bottom sediments: Preconcentration on a magnetic sorbent, GC-MS analysis, and weather observations // Chemical Papers. 2021. V. 75. № 4. P. 1445. https://doi.org/10.1007/s11696-020-01398-6
  38. Губин А.С., Суханов П.Т., Кушнир А.А., Шихалиев Х.С., Потапов М.А. Применение магнитных сорбентов, модифицированных молекулярно импринтированными полимерами, для скрининга фенольных ксеноэстрогенов // Аналитика и контроль. 2023. Т. 27. № 1. С. 32. https://doi.org/10.15826/analitika.2023.27.1.003

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of synthesis of the sorbent BuImCO2-OG-CO-NH-Fe3O4: production of Fe3O4 nanoparticles (I); surface modification with OH groups (II) and NH2 groups (III); oxidation of graphite (IV) to graphene oxide (V); modification with GSS (VI) and EDC to produce OG-CO-NH-Fe3O4 (VII); production of BuImCO2 (IX) by the reaction of BuIm (VIII) with dimethyl carbonate; production of BuMeImCO2-OG-CO-NH-Fe3O4 (X) by the interaction of OG-CO-NH-Fe3O4 and BuImCO2.

Download (232KB)
3. Fig. 2. Automated system of matrix solid-phase dispersion.

Download (208KB)
4. Fig. 3. Position of the six-way valve and direction of flows during operation of the automated system for matrix solid-phase dispersion (see the diagram in Fig. 2, orange color – active flow, black color – inactive flow): (a) – passing the suspension through column K2; (b) – desorption of bisphenol A; (c) – washing the sorbent in column K2; (d) – purging the system with air, transporting the sorbent to column K1; (d) – washing the system with bidistilled water.

Download (211KB)
5. Fig. 4. Micrograph of the BuMeImCO2-OG-CO-NH-Fe3O4 composite.

Download (156KB)
6. Fig. 5. IR Fourier spectra of the BuMeImCO2-OG-CO-NH-Fe3O4 composite.

Download (86KB)
7. Fig. 6. Diffraction pattern of the BuMeImCO2-OG-CO-NH-Fe3O4 composite.

Download (77KB)
8. Fig. 7. Magnetization curves of Fe3O4 (1) and the BuMeImCO2-OG-CO-NH-Fe3O4 composite (2).

Download (77KB)
9. Fig. 8. Efficiency of bisphenol A extraction from bottom sediments by the matrix solid-phase dispersion method using Fe3O4 (1), Fe3O4@SiO2 (2), Fe3O4@SiO2-NH2 (3), GO-CO-NH-Fe3O4 (4), BuMeImCO2-GO-CO-NH-Fe3O4 (5).

Download (63KB)
10. Fig. 9. Chromatogram of a bottom sediment sample (number 1 indicates the bisphenol A peak).

Download (83KB)
11. Fig. 10. Justification for the choice of conditions for concentrating bisphenol A using matrix solid-phase dispersion: selection of the sorbent mass (a), establishment of the grinding time in a ball mill (b) and desorption time (c), establishment of the possibility of reusing the sorbent – ​​the number of sorption-desorption cycles (d).

Download (282KB)

Copyright (c) 2024 Russian Academy of Sciences