Ксенобиотики и продукты их трансформации в сточных водах (обзор литературы)
- Авторы: Савостикова О.Н.1, Мамонов Р.А.1, Тюрина И.А.1, Алексеева А.В.1, Николаева Н.И.2
-
Учреждения:
- ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства
- ФГАОУ ВО «Первый московский государственный медицинский университет имени И.М. Сеченова Министерства Здравоохранения Российской Федерации (Сеченовский Университет)»
- Выпуск: Том 100, № 11 (2021)
- Страницы: 1218-1223
- Раздел: ГИГИЕНА ОКРУЖАЮЩЕЙ СРЕДЫ
- Статья опубликована: 06.12.2021
- URL: https://archivog.com/0016-9900/article/view/638729
- DOI: https://doi.org/10.47470/0016-9900-2021-100-11-1218-1223
- ID: 638729
Цитировать
Полный текст
Аннотация
В гидросферу со сточными водами попадает множество различных загрязняющих химических веществ. Значительным источником переноса ксенобиотиков в водную среду являются станции очистки сточных вод. Широкое применение фармацевтических препаратов, средств личной гигиены, косметической продукции, бытовой химии, дезинфицирующих средств и инсектицидов напрямую отражается в их наличии в водной среде и приводит к тому, что химические компоненты этих средств и продукты их трансформации могут быть обнаружены уже не только в поверхностных, но и в подземных водах, а также в питьевой воде. Кроме того, функционирование различных промышленных производств приводит к образованию большого количества сточных вод, загрязнённых текстильными красителями, нефтепродуктами, силиконами, фенолами и их производными, фталевыми эфирами, бисфенолом А и другими веществами, способными наносить ущерб водным объектам, отрицательно влиять на водную биоту или даже нанести вред экосистемам. В процессе водоочистки и далее под действием факторов окружающей среды вещества, попавшие в сточную воду, способны трансформироваться в ряд других соединений. Продукты трансформации могут быть более токсичными, чем исходные соединения, кроме того, некоторые из них под действием различных факторов способны превращаться обратно в исходные соединения. Поиск источников, описывающих исследования, посвящённые загрязняющим веществам и их трансформации в водных системах, проводился в англоязычных текстовых базах PubMed, Scopus, Science Direct, Web of Science, Research Gate, Springer Link и в научной электронной библиотеке eLIBRARY.ru.
Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов в связи с публикацией данной статьи.
Финансирование. Исследование не имело спонсорской поддержки.
Участие авторов:
Савостикова О.Н. — концепция и дизайн исследования, сбор и обработка материала, написание текста, редактирование;
Мамонов Р.А. — концепция и дизайн исследования, сбор и обработка материала, редактирование;
Тюрина И.А. — сбор и обработка материала, написание текста, редактирование;
Алексеева А.В. — сбор и обработка материала;
Николаева Н.И. — написание текста.
Все соавторы — утверждение окончательного варианта статьи, ответственность за целостность всех частей статьи.
Поступила: 22.03.2021 / Принята к печати: 28.09.2021 / Опубликована: 30.11.2021
Об авторах
О. Н. Савостикова
ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства
Автор, ответственный за переписку.
Email: noemail@neicon.ru
ORCID iD: 0000-0002-7032-1366
Россия
Р. А. Мамонов
ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства
Email: noemail@neicon.ru
ORCID iD: 0000-0002-6540-6015
Россия
Ирина Алексеевна Тюрина
ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства
Email: iturina@cspmz.ru
ORCID iD: 0000-0002-9364-5654
Биолог отд. профилактической токсикологии и медико-биологических исследований, ФГБУ «ЦСП» ФМБА России, 119121, Москва.
e-mail: ITurina@cspmz.ru
РоссияА. В. Алексеева
ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства
Email: noemail@neicon.ru
ORCID iD: 0000-0002-0422-8382
Россия
Н. И. Николаева
ФГАОУ ВО «Первый московский государственный медицинский университет имени И.М. Сеченова Министерства Здравоохранения Российской Федерации (Сеченовский Университет)»
Email: noemail@neicon.ru
ORCID iD: 0000-0003-1226-9990
Россия
Список литературы
- Mathon B., Choubert J.M., Miege C., Coquery M. A review of the photodegradability and transformation products of 13 pharmaceuticals and pesticides relevant to sewage polishing treatment. Sci. Total Environ. 2016; 551: 712-24. https://doi.org/10.1016/j.scitotenv.2016.02.009
- Zuccato E., Calamari D., Natangelo M., Fanelli R. Presence of therapeutic drugs in the environment. Lancet. 2000; 355(9217): 1789-90. https://doi.org/10.1016/S0140-6736(00)02270-4
- Kolpin D.W., Furlong E.T., Meyer M.T., Thurman E.M., Zaugg S.D., Barber L.B., et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance. Environ. Sci. Technol. 2002; 36(6): 1202-11. https://doi.org/10.1021/es011055j
- Ternes T.A. Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. TrAC Trends Anal. Chem. 2001; 20(8): 419-34. https://doi.org/10.1016/S0165-9936(01)00078-4
- Heberer T. Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J. Hydrol. 2002; 266(3-4): 175-89. https://doi.org/10.1016/S0022-1694(02)00165-8
- Jones O.A., Lester J.N., Voulvoulis N. Pharmaceuticals: a threat to drinking water? Trends Biotechnol. 2005; 23(4): 163-7. https://doi.org/10.1016/j.tibtech.2005.02.001
- Togola A., Budzinski H. Multi-residue analysis of pharmaceutical compounds in aqueous samples. J. Chromatogr. A. 2008; 1177(1): 150-8. https://doi.org/10.1016/j.chroma.2007.10.105
- La Farre M., Pérez S., Kantiani L., Barceló D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal. Chem. 2008; 27(11): 991-1007. https://doi.org/10.1016/j.trac.2008.09.010
- Donner E., Kosjek T., Qualmann S., Kusk K.O., Heath E., Revitt D.M., et al. Ecotoxicity of carbamazepine and its UV photolysis transformation products. Sci. Total Environ. 2013; 443: 870-6. https://doi.org/10.1016/j.scitotenv.2012.11.059
- Celiz M.D., Tso J., Aga D.S. Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environ. Toxicol. Chem. 2009; 28(12): 2473-84. https://doi.org/10.1897/09-173.1
- Azuma T., Ishida M., Hisamatsu K., Yunoki A., Otomo K., Kunitou M., et al. A method for evaluating the pharmaceutical deconjugation potential in river water environments. Chemosphere. 2017; 180: 476-82. https://doi.org/10.1016/j.chemosphere.2017.04.040
- Bendz D., Paxéus N.A., Ginn T.R., Loge F.J. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. J. Hazard. Mater. 2005; 122(3): 195-204. https://doi.org/10.1016/j.jhazmat.2005.03.012
- Carballa M., Omil F., Lema J.M., Llompart M.A., Garcı́a-Jares C., Rodrı́guez I., et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res. 2004; 38(12): 2918-26. https://doi.org/10.1016/j.watres.2004.03.029
- Spongberg A.L., Witter J.D. Pharmaceutical compounds in the wastewater process stream in Northwest Ohio. Sci. Total Environ. 2008; 397(1-3): 148-57. https://doi.org/10.1016/j.scitotenv.2008.02.042
- Couperus N.P., Pagsuyoin S.A., Bragg L.M., Servos M.R. Occurrence, distribution, and sources of antimicrobials in a mixed-use watershed. Sci. Total Environ. 2016; 541: 1581-91. https://doi.org/10.1016/j.scitotenv.2015.09.086
- Metcalfe C.D., Chu S., Judt C., Li H., Oakes K.D., Servos M.R., et al. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ. Toxicol. Chem. 2010; 29 (1): 79-89. https://doi.org/10.1002/etc.27
- Carrara C., Ptacek C.J., Robertson W.D., Blowes D.W., Moncur M.C., Sverko E., et al. Fate of pharmaceutical and trace organic compounds in three septic system plumes, Ontario, Canada. Environ. Sci. Technol. 2008; 42 (8): 2805-2811. https://doi.org/10.1021/es070344q
- Lapworth D., Baran N., Stuart M., Ward R. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ. Pollut. 2012; 163: 287-303. https://doi.org/10.1016/j.envpol.2011.12.034
- Metcalfe C., Hoque M.E., Sultana T., Murray C., Helm P., Kleywegt S. Monitoring for contaminants of emerging concern in drinking water using POCIS passive samplers. Environ. Sci. Process. Impacts. 2014; 16(3): 473-81. https://doi.org/10.1039/c3em00508a
- Petrie B., Barden R., Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015; 72: 3-27. https://doi.org/10.1016/j.watres.2014.08.053
- Hirsch R., Ternes T., Haberer K., Kratz K.L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999; 225 (1): 109-118. https://doi.org/10.1016/s0048-9697(98)00337-4
- Blair B.D., Crago J.P., Hedman C.J., Treguer R.J.F., Magruder C., Royer L.S., et al. Evaluation of a model for the removal of pharmaceuticals, personal care products, and hormones from wastewater. Sci. Total Environ. 2013; 444: 515-21. https://doi.org/10.1016/j.scitotenv.2012.11.103
- Phillips P.J., Smith S.G., Kolpin D.W., Zaugg S.D., Buxton H.T., Furlong E.T., et al. Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents. Environ. Sci. Technol. 2010; 44(13): 4910-6. https://doi.org/10.1021/es100356f
- Calza P., Medana C., Padovano E., Giancotti V., Minero C. Fate of selected pharmaceuticals in river waters. Environ. Sci. Pollut. Res. 2013; 20(4): 2262-70. https://doi.org/10.1007/s11356-012-1097-4
- Gonçalves C.M.O., Sousa M.A.D., Alpendurada M.d.F.P. Analysis of acidic, basic and neutral pharmaceuticals in river waters: clean-up by 1°, 2° amino anion exchange and enrichment using an hydrophilic adsorbent. Int. J. Environ. Anal. Chem. 2013; 93(1): 1-22. https://doi.org/10.1080/03067319.2012.702272
- Lindholm-Lehto P.C., Ahkola H.S., Knuutinen J.S., Herve S.H. Occurrence of pharmaceuticals in municipal wastewater, in the recipient water, and sedimented particles of northern Lake Päijänne. Environ. Sci. Pollut. Res. 2015; 22(21): 17209-23. https://doi.org/10.1007/s11356-015-4908-6
- Vione D., Maddigapu P.R., De Laurentiis E., Minella M., Pazzi M., Maurino V., et al. Modelling the photochemical fate of ibuprofen in surface waters. Water Res. 2011; 45(20): 6725-36. https://doi.org/10.1016/j.watres.2011.10.014
- Larsen C., Yu Z.H., Flick R., Passeport E. Mechanisms of pharmaceutical and personal care product removal in algae-based wastewater treatment systems. Sci. Total Environ. 2019; 695: 133772. https://doi.org/10.1016/j.scitotenv.2019.133772
- Landsdorp D., Vree T., Janssen T., Guelen P. Pharmacokinetics of rectal diclofenac and its hydroxy metabolites in man. Int. J. Clin. Pharmacol. Ther. Toxicol. 1990; 28(7): 298-302.
- Andreozzi R., Raffaele M., Nicklas P. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere. 2003; 50(10): 1319-30. https://doi.org/10.1016/s0045-6535(02)00769-5
- Schulze T., Weiss S., Schymanski E., von der Ohe P.C., Schmitt-Jansen M., Altenburger R., et al. Identification of a phytotoxic photo-transformation product of diclofenac using effect-directed analysis. Environ. Pollut. 2010; 158(5): 1461-6. https://doi.org/10.1016/j.envpol.2009.12.032
- Agüera A., Pérez Estrada L., Ferrer I., Thurman E., Malato S., Fernández-Alba A. Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. J. Mass Spectrom. 2005; 40(7): 908-15. https://doi.org/10.1002/jms.867
- Gröning J., Held C., Garten C., Claußnitzer U., Kaschabek S.R., Schlömann M. Transformation of diclofenac by the indigenous microflora of river sediments and identification of a major intermediate. Chemosphere. 2007; 69(4): 509-16. https://doi.org/10.1016/j.chemosphere.2007.03.037
- Chen P., Wang F.L., Yao K., Ma J.S., Li F.H., Lv W.Y., et al. Photodegradation of mefenamic acid in aqueous media: kinetics, toxicity and photolysis products. Bull. Environ. Contam. Toxicol. 2016; 96(2): 203-9. https://doi.org/10.1007/s00128-015-1680-8
- Cycoń M., Mrozik A., Piotrowska-Seget Z. Antibiotics in the soil environment - degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019; 10: 338. https://doi.org/10.3389/fmicb.2019.00338
- European Centre for disease prevention and Control. An agency of the European Union. Country overview of antimicrobial consumption. Available at: https://www.ecdc.europa.eu/en/activities/surveillance/esac-net/pages/index.aspx
- Ji X., Shen Q., Liu F., Ma J., Xu G., Wang Y., et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J. Hazard. Mater. 2012; 235-236: 178-85. https://doi.org/10.1016/j.jhazmat.2012.07.040
- Harnisz M., Korzeniewska E., Gołaś I. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water. Chemosphere. 2015; 128: 134-41. https://doi.org/10.1016/j.chemosphere.2015.01.035
- Barbosa M.O., Moreira N.F., Ribeiro A.R., Pereira M.F., Silva A.M. Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495. Water Res. 2016; 94: 257-79. https://doi.org/10.1016/j.watres.2016.02.047
- Ternes T., Joss A. Human Pharmaceuticals, Hormones and Fragrances. London, New York: IWA publishing; 2007.
- Loos R., Carvalho R., António D.C., Comero S., Locoro G., Tavazzi S., et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013; 47(17): 6475-87. https://doi.org/10.1016/j.watres.2013.08.024
- Shenker M., Harush D., Ben-Ari J., Chefetz B. Uptake of carbamazepine by cucumber plants - a case study related to irrigation with reclaimed wastewater. Chemosphere. 2011; 82(6): 905-10. https://doi.org/10.1016/j.chemosphere.2010.10.052
- Vymazal J., Březinová T. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ. Int. 2015; 75: 11-20. https://doi.org/10.1016/j.envint.2014.10.026
- Kools S.A., Moltmann J.F., Knacker T. Estimating the use of veterinary medicines in the European Union. Regul. Toxicol. Pharmacol. 2008; 50(1): 59-65. https://doi.org/10.1016/j.yrtph.2007.06.003
- Kumar M., Jaiswal S., Sodhi K.K., Shree P., Singh D.K., Agrawal P.K., et al. Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance. Environ. Int. 2019; 124: 448-61. https://doi.org/10.1016/j.envint.2018.12.065
- Munita J.M., Arias C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016; 4(2): 481-511. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
- Śliwka-Kaszyńska M., Jakimska-Nagórska A., Wasik A., Kot-Wasik A. Phototransformation of three selected pharmaceuticals, naproxen, 17α-Ethinylestradiol and tetracycline in water: Identification of photoproducts and transformation pathways. Microchem. J. 2019; 148: 673-83. https://doi.org/10.1016/j.microc.2019.05.036
- Elizalde-Velázquez G.A., Gómez-Oliván L.M. Occurrence, toxic effects and removal of metformin in the aquatic environments in the world: Recent trends and perspectives. Sci. Total Environ. 2020; 702: 134924. https://doi.org/10.1016/j.scitotenv.2019.134924
- Reinholds I., Muter O., Pugajeva I., Rusko J., Perkons I., Bartkevics V. Determination of pharmaceutical residues and assessment of their removal efficiency at the Daugavgriva municipal wastewater treatment plant in Riga, Latvia. Water Sci. Technol. 2016; 75(2): 387-96. https://doi.org/10.2166/wst.2016.528
- Viega B.L., Rocha A.M., Düsman E. Cosmetics with hormonal composition for bioindicators Artemia salina L. and Allium cepa L. toxic potential. Environ. Sci. Pollut. Res. 2020; 27(6): 6659-66. https://doi.org/10.1007/s11356-019-07392-0
- MedicinaNET. Estreva. Available at: https://www.medicinanet.com.br/bula/2304/estreva.htm
- Tsametis C.P., Isidori A.M. Testosterone replacement therapy: For whom, when and how? Metabolism. 2018; 86: 69-78. https://doi.org/10.1016/j.metabol.2018.03.007
- Bila D.M., Dezotti M. Desreguladores endócrinos no meio ambiente: efeitos e conseqüências. Química Nova. 2007; 30: 651-66. https://doi.org/10.1590/S0100-40422007000300027
- Wang D., Cao J., Han D., Li W., Feng S. Novel organosilicon synthetic methodologies. Progress Chem. 2019; 31(1): 110-20. https://doi.org/10.7536/PC180535
- Liu J., Li J., Mei R., Wang F., Sellamuthu B. Treatment of recalcitrant organic silicone wastewater by fluidized-bed Fenton process. Sep. Purif. Technol. 2014; 132: 16-22. https://doi.org/10.1016/j.seppur.2014.04.050
- Lellis B., Fávaro-Polonio C.Z., Pamphile J.A., Polonio J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Inn. 2019; 3(2): 275-90. https://doi.org/10.1016/j.biori.2019.09.001
- Bhatia S.C. Pollution Control in Textile Industry. New Delhi: Woodhead Publishing India; 2017.
- Hossain M.S., Das S.C., Islam J.M.M., Al Mamun M.A., Khan M.A. Reuse of textile mill ETP sludge in environmental friendly bricks - effect of gamma radiation. Rad. Phys. Chem. 2018; 151: 77-83. https://doi.org/10.1016/j.radphyschem.2018.05.020
- Wang D.M. Environmental Protection in Clothing Industry. Proceedings of the 2015 International Conference on Sustainable Development (ICSD2015). Singapore: World Scientific Publishing Co Pte Ltd; 2016: 729-35.
- Setiadi T., Andriani Y., Erlania M. Treatment of Textile Wastewater by a Combination of Anaerobic and Aerobic Processes: A Denim Processing Plant Case. Southeast Asian Water Environment 1: Selected Papers from the First International Symposium on Southeast Asian Water Environment (Biodiversity and Water Environment). Bangkok: IWA Publishing; 2006: 159-66.
- Hassan M.M., Carr C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere. 2018; 209: 201-19. https://doi.org/10.1016/j.chemosphere.2018.06.043
- Imran M., Crowley D.E., Khalid A., Hussain S., Mumtaz M.W., Arshad M. Microbial biotechnology for decolorization of textile wastewaters. Rev. Environ. Sci. Bio/Technol. 2015; 14(1): 73-92. https://doi.org/10.1007/s11157-014-9344-4
- Aquino J.M., Rocha-Filho R.C., Ruotolo L.A.M., Bocchi N., Biaggio S.R. Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chem. Eng. J. 2014; 251: 138-45. https://doi.org/10.1016/j.cej.2014.04.032
- Khatri J., Nidheesh P.V., Anantha Singh T.S., Suresh Kumar M. Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chem. Eng. J. 2018; 348: 67-73. https://doi.org/10.1016/j.cej.2018.04.074
- Sandhya S. Biodegradation of Azo Dyes under Anaerobic Condition: Role of Azoreductase. Biodegradation of Azo Dyes. The Handbook of Environmental Chemistry. Berlin: Heidelberg; 2010: 39-57.
- Newman M. Fundamentals of Ecotoxicology. Boca Raton: CRC Press; 2009.
- Rehman K., Shahzad T., Sahar A., Hussain S., Mahmood F., Siddique M.H., et al. Effect of Reactive Black 5 azo dye on soil processes related to C and N cycling. PeerJ. 2018; 6: e4802. https://doi.org/10.7717/peerj.4802
- Orts F., del Río A.I., Molina J., Bonastre J., Cases F. Electrochemical treatment of real textile wastewater: Trichromy Procion HEXL®. J. Electroanal. Chem. 2018; 808: 387-94. https://doi.org/10.1016/j.jelechem.2017.06.051
- Кузин Е.Н., Кручинина Н.Е. Оценка эффективности использования комплексных коагулянтов в процессах очистки сточных вод машиностроительного производства. Известия высших учебных заведений. Серия: Химия и химическая технология. 2019; 62(10): 140-6. https://doi.org/10.6060/ivkkt.20196210.5939
- Mu’azu N.D., Jarrah N., Zubair M., Alagha O. Removal of phenolic compounds from water using sewage sludge-based activated carbon adsorption: a review. Int. J. Environ. Res. Public Health. 2017; 14(10): 1094. https://doi.org/10.3390/ijerph14101094
- Busca G., Berardinelli S., Resini C., Arrighi L. Technologies for the removal of phenol from fluid streams: A short review of recent developments. J. Hazard. Mater. 2008; 160(2-3): 265-88. https://doi.org/10.1016/j.jhazmat.2008.03.045
- Michałowicz J., Duda W. Phenols - sources and toxicity. Pol. J. Environ. Stud. 2007; 16(3): 347-62.
- Heudorf U., Mersch-Sundermann V., Angerer J. Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health. 2007; 210(5): 623-34. https://doi.org/10.1016/j.ijheh.2007.07.011
- Oehlmann J., Oetken M., Schulte-Oehlmann U. A critical evaluation of the environmental risk assessment for plasticizers in the freshwater environment in Europe, with special emphasis on bisphenol A and endocrine disruption. Environ. Res. 2008; 108(2): 140-9. https://doi.org/10.1016/j.envres.2008.07.016
- Vandenberg L.N., Maffini M.V., Sonnenschein C., Rubin B.S., Soto A.M. Bisphenol-A and the great divide: A review of controversies in the field of endocrine disruption. Endocr. Rev. 2009; 30(1): 75-95. https://doi.org/10.1210/er.2008-0021
- Clara M., Windhofer G., Hartl W., Braun K., Simon M., Gans O., et al. Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment. Chemosphere. 2010; 78(9): 1078-84. https://doi.org/10.1016/j.chemosphere.2009.12.052
- Çifci D.İ., Kınacı C., Arikan O.A. Occurrence of phthalates in sewage sludge from three wastewater treatment plants in Istanbul, Turkey. CLEAN - Soil, Air, Water. 2013; 41(9): 851-5. https://doi.org/10.1002/clen.201200212
- Huang J., Nkrumah P.N., Li Y., Appiah-Sefah G. Chemical behavior of phthalates under abiotic conditions in landfills. Rev. Environ. Contam. Toxicol. 2013; 224: 39-52. https://doi.org/10.1007/978-1-4614-5882-1_2
- Net S., Sempéré R., Delmont A., Paluselli A., Ouddane B. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ. Sci. Technol. 2015; 49(7): 4019-35. https://doi.org/10.1021/es505233b
- Staples C.A., Dome P.B., Klecka G.M., Oblock S.T., Harris L.R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 1998; 36 (10): 2149-73. https://doi.org/10.1016/S0045-6535(97)10133-3
- Flint S., Markle T., Thompson S., Wallace E. Bisphenol A exposure, effects, and policy: A wildlife perspective. J. Environ. Manage. 2012; 104: 19-34. https://doi.org/10.1016/j.jenvman.2012.03.021
- Lee S., Liao C., Song G.J., Ra K., Kannan K., Moon H.B. Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea. Chemosphere. 2015; 119: 1000-6. https://doi.org/10.1016/j.chemosphere.2014.09.011
- Pookpoosa I., Jindal R., Morknoy D., Tantrakarnapa K. Occurrence and efficacy of bisphenol A (BPA) treatment in selected municipal wastewater treatment plants, Bangkok, Thailand. Water Sci. Technol. 2015; 72(3): 463-71. https://doi.org/10.2166/wst.2015.232
- Fent G., Hein W.J., Moendel M.J., Kubiak R. Fate of 14C-bisphenol A in soils. Chemosphere. 2003; 51(8): 735-6. https://doi.org/10.1016/S0045-6535(03)00100-0
- Vandenberg L.N. Exposure to bisphenol A in Canada: invoking the precautionary principle. CMAJ. 2011; 183(11): 1265-70. https://doi.org/10.1503/cmaj.101408
- Montes-Grajales D., Fennix-Agudelo M., Miranda-Castro W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci. Total Environ. 2017; 595: 601-14. https://doi.org/10.1016/j.scitotenv.2017.03.286
- Yuval A., Friedler E., Westphal J., Olsson O., Dubowski Y. Photodegradation of micropollutants using V-UV/UV-C processes; Triclosan as a model compound. Sci. Total Environ. 2017; 601-602: 397-404. https://doi.org/10.1016/j.scitotenv.2017.05.172
- Wang J., Tian Z., Huo Y., Yang M., Zheng X., Zhang Y. Monitoring of 943 organic micropollutants in wastewater from municipal wastewater treatment plants with secondary and advanced treatment processes. J. Environ. Sci. 2018; 67: 309-17. https://doi.org/10.1016/j.jes.2017.09.014
- Bock M., Lyndall J., Barber T., Fuchsman P., Perruchon E., Capdevielle M. Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment. Integr. Environ. Assess. Manag. 2010; 6(3): 393-404. https://doi.org/10.1897/IEAM_2009-070.1
- Kuznetsov V.V., Kapustin E.S., Pirogov A.V., Kurdin K.A., Filatova E.A., Kolesnikov V.A. An effective electrochemical destruction of non-ionic surfactants on bismuth-modified lead dioxide anodes for wastewater pretreatment. J. Solid State Electrochem. 2020; 24(1) 173-83. https://doi.org/10.1007/s10008-019-04483-3
- Czech B., Ćwikła-Bundyra W. Advanced oxidation processes in Triton X-100 and wash-up liquid removal from wastewater using modified TiO2/Al2O3 photocatalysts. Water Air Soil Pollut. 2012; 223(8): 4813-22. https://doi.org/10.1007/s11270-012-1237-y
- Гончарук В.В., Клищенко Р.Е., Корниенко И.В. Деструкция неионогенных ПАВвплазмохимическом реакторе. Химия и технология воды. 2017; 39(6): 642-50
- Šíma J., Holcová V. Removal of nonionic surfactants from wastewater using a constructed wetland. Chem. Biodivers. 2011; 8(10): 1819-32. https://doi.org/10.1002/cbdv.201100063
- Markle J.C., van Buuren B.H., Moran K., Barefoot A.C. Pyrethroid pesticides in municipal wastewater: A baseline survey of publicly owned treatment works facilities. In: Describing the Behavior and Effects of Pesticides in Urban and Agricultural Settings: Chapter 8. ACS Symposium Series, Volume 1168. American Chemical Society; 2014: 177-94. https://doi.org/10.1021/bk-2014-1168.ch008
- Eawag - Swiss Federal Institute of Aquatic Science and Technology. Parent-Transformation Product Pairs from Eawag. Available at: https://zenodo.org/record/3829088#.XzuQb-gzaUl
- Simon-Delso N., Amaral-Rogers V., Belzunces L.P., Bonmatin J.M., Chagnon M., Downs C., et al. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2015; 22(1): 5-34. https://doi.org/10.1007/s11356-014-3470-y
- Ensminger M.P., Budd R., Kelley K.C., Goh K.S. Pesticide occurrence and aquatic benchmark exceedances in urban surface waters and sediments in three urban areas of California, USA, 2008-2011. Environ. Monit. Assess. 2013; 185(5): 3697-710. https://doi.org/10.1007/s10661-012-2821-8
- Budd R., Ensminger M., Wang D., Goh K.S. Monitoring Fipronil and Degradates in California Surface Waters, 2008-2013. J. Environ. Qual. 2015; 44(4): 1233-40. https://doi.org/10.2134/jeq2015.01.0018
- Hladik M.L., Kolpin D.W. First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA. Environ. Chem. 2016; 13(1): 12-20. https://doi.org/10.1071/EN15061
- Sadaria A.M., Sutton R., Moran K.D., Teerlink J., Brown J.V., Halden R.U. Passage of fiproles and imidacloprid from urban pest control uses through wastewater treatment plants in northern California, USA. Environ. Toxicol. Chem. 2017; 36(6): 1473-82. https://doi.org/10.1002/etc.3673
Дополнительные файлы
