Ксенобиотики и продукты их трансформации в сточных водах (обзор литературы)

Обложка

Цитировать

Полный текст

Аннотация

В гидросферу со сточными водами попадает множество различных загрязняющих химических веществ. Значительным источником переноса ксенобиотиков в водную среду являются станции очистки сточных вод. Широкое применение фармацевтических препаратов, средств личной гигиены, косметической продукции, бытовой химии, дезинфицирующих средств и инсектицидов напрямую отражается в их наличии в водной среде и приводит к тому, что химические компоненты этих средств и продукты их трансформации могут быть обнаружены уже не только в поверхностных, но и в подземных водах, а также в питьевой воде. Кроме того, функционирование различных промышленных производств приводит к образованию большого количества сточных вод, загрязнённых текстильными красителями, нефтепродуктами, силиконами, фенолами и их производными, фталевыми эфирами, бисфенолом А и другими веществами, способными наносить ущерб водным объектам, отрицательно влиять на водную биоту или даже нанести вред экосистемам. В процессе водоочистки и далее под действием факторов окружающей среды вещества, попавшие в сточную воду, способны трансформироваться в ряд других соединений. Продукты трансформации могут быть более токсичными, чем исходные соединения, кроме того, некоторые из них под действием различных факторов способны превращаться обратно в исходные соединения. Поиск источников, описывающих исследования, посвящённые загрязняющим веществам и их трансформации в водных системах, проводился в англоязычных текстовых базах PubMed, Scopus, Science Direct, Web of Science, Research Gate, Springer Link и в научной электронной библиотеке eLIBRARY.ru.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов в связи с публикацией данной статьи.

Финансирование. Исследование не имело спонсорской поддержки.

Участие авторов:
Савостикова О.Н. — концепция и дизайн исследования, сбор и обработка материала, написание текста, редактирование;
Мамонов Р.А. — концепция и дизайн исследования, сбор и обработка материала, редактирование;
Тюрина И.А. — сбор и обработка материала, написание текста, редактирование;
Алексеева А.В. — сбор и обработка материала;
Николаева Н.И. — написание текста.
Все соавторы — утверждение окончательного варианта статьи, ответственность за целостность всех частей статьи.

Поступила: 22.03.2021 / Принята к печати: 28.09.2021 / Опубликована: 30.11.2021

Об авторах

О. Н. Савостикова

ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства

Автор, ответственный за переписку.
Email: noemail@neicon.ru
ORCID iD: 0000-0002-7032-1366
Россия

Р. А. Мамонов

ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства

Email: noemail@neicon.ru
ORCID iD: 0000-0002-6540-6015
Россия

Ирина Алексеевна Тюрина

ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства

Email: iturina@cspmz.ru
ORCID iD: 0000-0002-9364-5654

Биолог отд. профилактической токсикологии и медико-биологических исследований, ФГБУ «ЦСП» ФМБА России, 119121, Москва.

e-mail: ITurina@cspmz.ru

Россия

А. В. Алексеева

ФГБУ «Центр стратегического планирования и управления медико-биологическими рисками здоровью» Федерального медико-биологического агентства

Email: noemail@neicon.ru
ORCID iD: 0000-0002-0422-8382
Россия

Н. И. Николаева

ФГАОУ ВО «Первый московский государственный медицинский университет имени И.М. Сеченова Министерства Здравоохранения Российской Федерации (Сеченовский Университет)»

Email: noemail@neicon.ru
ORCID iD: 0000-0003-1226-9990
Россия

Список литературы

  1. Mathon B., Choubert J.M., Miege C., Coquery M. A review of the photodegradability and transformation products of 13 pharmaceuticals and pesticides relevant to sewage polishing treatment. Sci. Total Environ. 2016; 551: 712-24. https://doi.org/10.1016/j.scitotenv.2016.02.009
  2. Zuccato E., Calamari D., Natangelo M., Fanelli R. Presence of therapeutic drugs in the environment. Lancet. 2000; 355(9217): 1789-90. https://doi.org/10.1016/S0140-6736(00)02270-4
  3. Kolpin D.W., Furlong E.T., Meyer M.T., Thurman E.M., Zaugg S.D., Barber L.B., et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance. Environ. Sci. Technol. 2002; 36(6): 1202-11. https://doi.org/10.1021/es011055j
  4. Ternes T.A. Analytical methods for the determination of pharmaceuticals in aqueous environmental samples. TrAC Trends Anal. Chem. 2001; 20(8): 419-34. https://doi.org/10.1016/S0165-9936(01)00078-4
  5. Heberer T. Tracking persistent pharmaceutical residues from municipal sewage to drinking water. J. Hydrol. 2002; 266(3-4): 175-89. https://doi.org/10.1016/S0022-1694(02)00165-8
  6. Jones O.A., Lester J.N., Voulvoulis N. Pharmaceuticals: a threat to drinking water? Trends Biotechnol. 2005; 23(4): 163-7. https://doi.org/10.1016/j.tibtech.2005.02.001
  7. Togola A., Budzinski H. Multi-residue analysis of pharmaceutical compounds in aqueous samples. J. Chromatogr. A. 2008; 1177(1): 150-8. https://doi.org/10.1016/j.chroma.2007.10.105
  8. La Farre M., Pérez S., Kantiani L., Barceló D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal. Chem. 2008; 27(11): 991-1007. https://doi.org/10.1016/j.trac.2008.09.010
  9. Donner E., Kosjek T., Qualmann S., Kusk K.O., Heath E., Revitt D.M., et al. Ecotoxicity of carbamazepine and its UV photolysis transformation products. Sci. Total Environ. 2013; 443: 870-6. https://doi.org/10.1016/j.scitotenv.2012.11.059
  10. Celiz M.D., Tso J., Aga D.S. Pharmaceutical metabolites in the environment: analytical challenges and ecological risks. Environ. Toxicol. Chem. 2009; 28(12): 2473-84. https://doi.org/10.1897/09-173.1
  11. Azuma T., Ishida M., Hisamatsu K., Yunoki A., Otomo K., Kunitou M., et al. A method for evaluating the pharmaceutical deconjugation potential in river water environments. Chemosphere. 2017; 180: 476-82. https://doi.org/10.1016/j.chemosphere.2017.04.040
  12. Bendz D., Paxéus N.A., Ginn T.R., Loge F.J. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. J. Hazard. Mater. 2005; 122(3): 195-204. https://doi.org/10.1016/j.jhazmat.2005.03.012
  13. Carballa M., Omil F., Lema J.M., Llompart M.A., Garcı́a-Jares C., Rodrı́guez I., et al. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant. Water Res. 2004; 38(12): 2918-26. https://doi.org/10.1016/j.watres.2004.03.029
  14. Spongberg A.L., Witter J.D. Pharmaceutical compounds in the wastewater process stream in Northwest Ohio. Sci. Total Environ. 2008; 397(1-3): 148-57. https://doi.org/10.1016/j.scitotenv.2008.02.042
  15. Couperus N.P., Pagsuyoin S.A., Bragg L.M., Servos M.R. Occurrence, distribution, and sources of antimicrobials in a mixed-use watershed. Sci. Total Environ. 2016; 541: 1581-91. https://doi.org/10.1016/j.scitotenv.2015.09.086
  16. Metcalfe C.D., Chu S., Judt C., Li H., Oakes K.D., Servos M.R., et al. Antidepressants and their metabolites in municipal wastewater, and downstream exposure in an urban watershed. Environ. Toxicol. Chem. 2010; 29 (1): 79-89. https://doi.org/10.1002/etc.27
  17. Carrara C., Ptacek C.J., Robertson W.D., Blowes D.W., Moncur M.C., Sverko E., et al. Fate of pharmaceutical and trace organic compounds in three septic system plumes, Ontario, Canada. Environ. Sci. Technol. 2008; 42 (8): 2805-2811. https://doi.org/10.1021/es070344q
  18. Lapworth D., Baran N., Stuart M., Ward R. Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environ. Pollut. 2012; 163: 287-303. https://doi.org/10.1016/j.envpol.2011.12.034
  19. Metcalfe C., Hoque M.E., Sultana T., Murray C., Helm P., Kleywegt S. Monitoring for contaminants of emerging concern in drinking water using POCIS passive samplers. Environ. Sci. Process. Impacts. 2014; 16(3): 473-81. https://doi.org/10.1039/c3em00508a
  20. Petrie B., Barden R., Kasprzyk-Hordern B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015; 72: 3-27. https://doi.org/10.1016/j.watres.2014.08.053
  21. Hirsch R., Ternes T., Haberer K., Kratz K.L. Occurrence of antibiotics in the aquatic environment. Sci. Total Environ. 1999; 225 (1): 109-118. https://doi.org/10.1016/s0048-9697(98)00337-4
  22. Blair B.D., Crago J.P., Hedman C.J., Treguer R.J.F., Magruder C., Royer L.S., et al. Evaluation of a model for the removal of pharmaceuticals, personal care products, and hormones from wastewater. Sci. Total Environ. 2013; 444: 515-21. https://doi.org/10.1016/j.scitotenv.2012.11.103
  23. Phillips P.J., Smith S.G., Kolpin D.W., Zaugg S.D., Buxton H.T., Furlong E.T., et al. Pharmaceutical formulation facilities as sources of opioids and other pharmaceuticals to wastewater treatment plant effluents. Environ. Sci. Technol. 2010; 44(13): 4910-6. https://doi.org/10.1021/es100356f
  24. Calza P., Medana C., Padovano E., Giancotti V., Minero C. Fate of selected pharmaceuticals in river waters. Environ. Sci. Pollut. Res. 2013; 20(4): 2262-70. https://doi.org/10.1007/s11356-012-1097-4
  25. Gonçalves C.M.O., Sousa M.A.D., Alpendurada M.d.F.P. Analysis of acidic, basic and neutral pharmaceuticals in river waters: clean-up by 1°, 2° amino anion exchange and enrichment using an hydrophilic adsorbent. Int. J. Environ. Anal. Chem. 2013; 93(1): 1-22. https://doi.org/10.1080/03067319.2012.702272
  26. Lindholm-Lehto P.C., Ahkola H.S., Knuutinen J.S., Herve S.H. Occurrence of pharmaceuticals in municipal wastewater, in the recipient water, and sedimented particles of northern Lake Päijänne. Environ. Sci. Pollut. Res. 2015; 22(21): 17209-23. https://doi.org/10.1007/s11356-015-4908-6
  27. Vione D., Maddigapu P.R., De Laurentiis E., Minella M., Pazzi M., Maurino V., et al. Modelling the photochemical fate of ibuprofen in surface waters. Water Res. 2011; 45(20): 6725-36. https://doi.org/10.1016/j.watres.2011.10.014
  28. Larsen C., Yu Z.H., Flick R., Passeport E. Mechanisms of pharmaceutical and personal care product removal in algae-based wastewater treatment systems. Sci. Total Environ. 2019; 695: 133772. https://doi.org/10.1016/j.scitotenv.2019.133772
  29. Landsdorp D., Vree T., Janssen T., Guelen P. Pharmacokinetics of rectal diclofenac and its hydroxy metabolites in man. Int. J. Clin. Pharmacol. Ther. Toxicol. 1990; 28(7): 298-302.
  30. Andreozzi R., Raffaele M., Nicklas P. Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere. 2003; 50(10): 1319-30. https://doi.org/10.1016/s0045-6535(02)00769-5
  31. Schulze T., Weiss S., Schymanski E., von der Ohe P.C., Schmitt-Jansen M., Altenburger R., et al. Identification of a phytotoxic photo-transformation product of diclofenac using effect-directed analysis. Environ. Pollut. 2010; 158(5): 1461-6. https://doi.org/10.1016/j.envpol.2009.12.032
  32. Agüera A., Pérez Estrada L., Ferrer I., Thurman E., Malato S., Fernández-Alba A. Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. J. Mass Spectrom. 2005; 40(7): 908-15. https://doi.org/10.1002/jms.867
  33. Gröning J., Held C., Garten C., Claußnitzer U., Kaschabek S.R., Schlömann M. Transformation of diclofenac by the indigenous microflora of river sediments and identification of a major intermediate. Chemosphere. 2007; 69(4): 509-16. https://doi.org/10.1016/j.chemosphere.2007.03.037
  34. Chen P., Wang F.L., Yao K., Ma J.S., Li F.H., Lv W.Y., et al. Photodegradation of mefenamic acid in aqueous media: kinetics, toxicity and photolysis products. Bull. Environ. Contam. Toxicol. 2016; 96(2): 203-9. https://doi.org/10.1007/s00128-015-1680-8
  35. Cycoń M., Mrozik A., Piotrowska-Seget Z. Antibiotics in the soil environment - degradation and their impact on microbial activity and diversity. Front. Microbiol. 2019; 10: 338. https://doi.org/10.3389/fmicb.2019.00338
  36. European Centre for disease prevention and Control. An agency of the European Union. Country overview of antimicrobial consumption. Available at: https://www.ecdc.europa.eu/en/activities/surveillance/esac-net/pages/index.aspx
  37. Ji X., Shen Q., Liu F., Ma J., Xu G., Wang Y., et al. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai; China. J. Hazard. Mater. 2012; 235-236: 178-85. https://doi.org/10.1016/j.jhazmat.2012.07.040
  38. Harnisz M., Korzeniewska E., Gołaś I. The impact of a freshwater fish farm on the community of tetracycline-resistant bacteria and the structure of tetracycline resistance genes in river water. Chemosphere. 2015; 128: 134-41. https://doi.org/10.1016/j.chemosphere.2015.01.035
  39. Barbosa M.O., Moreira N.F., Ribeiro A.R., Pereira M.F., Silva A.M. Occurrence and removal of organic micropollutants: an overview of the watch list of EU Decision 2015/495. Water Res. 2016; 94: 257-79. https://doi.org/10.1016/j.watres.2016.02.047
  40. Ternes T., Joss A. Human Pharmaceuticals, Hormones and Fragrances. London, New York: IWA publishing; 2007.
  41. Loos R., Carvalho R., António D.C., Comero S., Locoro G., Tavazzi S., et al. EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Res. 2013; 47(17): 6475-87. https://doi.org/10.1016/j.watres.2013.08.024
  42. Shenker M., Harush D., Ben-Ari J., Chefetz B. Uptake of carbamazepine by cucumber plants - a case study related to irrigation with reclaimed wastewater. Chemosphere. 2011; 82(6): 905-10. https://doi.org/10.1016/j.chemosphere.2010.10.052
  43. Vymazal J., Březinová T. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: a review. Environ. Int. 2015; 75: 11-20. https://doi.org/10.1016/j.envint.2014.10.026
  44. Kools S.A., Moltmann J.F., Knacker T. Estimating the use of veterinary medicines in the European Union. Regul. Toxicol. Pharmacol. 2008; 50(1): 59-65. https://doi.org/10.1016/j.yrtph.2007.06.003
  45. Kumar M., Jaiswal S., Sodhi K.K., Shree P., Singh D.K., Agrawal P.K., et al. Antibiotics bioremediation: Perspectives on its ecotoxicity and resistance. Environ. Int. 2019; 124: 448-61. https://doi.org/10.1016/j.envint.2018.12.065
  46. Munita J.M., Arias C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016; 4(2): 481-511. https://doi.org/10.1128/microbiolspec.VMBF-0016-2015
  47. Śliwka-Kaszyńska M., Jakimska-Nagórska A., Wasik A., Kot-Wasik A. Phototransformation of three selected pharmaceuticals, naproxen, 17α-Ethinylestradiol and tetracycline in water: Identification of photoproducts and transformation pathways. Microchem. J. 2019; 148: 673-83. https://doi.org/10.1016/j.microc.2019.05.036
  48. Elizalde-Velázquez G.A., Gómez-Oliván L.M. Occurrence, toxic effects and removal of metformin in the aquatic environments in the world: Recent trends and perspectives. Sci. Total Environ. 2020; 702: 134924. https://doi.org/10.1016/j.scitotenv.2019.134924
  49. Reinholds I., Muter O., Pugajeva I., Rusko J., Perkons I., Bartkevics V. Determination of pharmaceutical residues and assessment of their removal efficiency at the Daugavgriva municipal wastewater treatment plant in Riga, Latvia. Water Sci. Technol. 2016; 75(2): 387-96. https://doi.org/10.2166/wst.2016.528
  50. Viega B.L., Rocha A.M., Düsman E. Cosmetics with hormonal composition for bioindicators Artemia salina L. and Allium cepa L. toxic potential. Environ. Sci. Pollut. Res. 2020; 27(6): 6659-66. https://doi.org/10.1007/s11356-019-07392-0
  51. MedicinaNET. Estreva. Available at: https://www.medicinanet.com.br/bula/2304/estreva.htm
  52. Tsametis C.P., Isidori A.M. Testosterone replacement therapy: For whom, when and how? Metabolism. 2018; 86: 69-78. https://doi.org/10.1016/j.metabol.2018.03.007
  53. Bila D.M., Dezotti M. Desreguladores endócrinos no meio ambiente: efeitos e conseqüências. Química Nova. 2007; 30: 651-66. https://doi.org/10.1590/S0100-40422007000300027
  54. Wang D., Cao J., Han D., Li W., Feng S. Novel organosilicon synthetic methodologies. Progress Chem. 2019; 31(1): 110-20. https://doi.org/10.7536/PC180535
  55. Liu J., Li J., Mei R., Wang F., Sellamuthu B. Treatment of recalcitrant organic silicone wastewater by fluidized-bed Fenton process. Sep. Purif. Technol. 2014; 132: 16-22. https://doi.org/10.1016/j.seppur.2014.04.050
  56. Lellis B., Fávaro-Polonio C.Z., Pamphile J.A., Polonio J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Inn. 2019; 3(2): 275-90. https://doi.org/10.1016/j.biori.2019.09.001
  57. Bhatia S.C. Pollution Control in Textile Industry. New Delhi: Woodhead Publishing India; 2017.
  58. Hossain M.S., Das S.C., Islam J.M.M., Al Mamun M.A., Khan M.A. Reuse of textile mill ETP sludge in environmental friendly bricks - effect of gamma radiation. Rad. Phys. Chem. 2018; 151: 77-83. https://doi.org/10.1016/j.radphyschem.2018.05.020
  59. Wang D.M. Environmental Protection in Clothing Industry. Proceedings of the 2015 International Conference on Sustainable Development (ICSD2015). Singapore: World Scientific Publishing Co Pte Ltd; 2016: 729-35.
  60. Setiadi T., Andriani Y., Erlania M. Treatment of Textile Wastewater by a Combination of Anaerobic and Aerobic Processes: A Denim Processing Plant Case. Southeast Asian Water Environment 1: Selected Papers from the First International Symposium on Southeast Asian Water Environment (Biodiversity and Water Environment). Bangkok: IWA Publishing; 2006: 159-66.
  61. Hassan M.M., Carr C.M. A critical review on recent advancements of the removal of reactive dyes from dyehouse effluent by ion-exchange adsorbents. Chemosphere. 2018; 209: 201-19. https://doi.org/10.1016/j.chemosphere.2018.06.043
  62. Imran M., Crowley D.E., Khalid A., Hussain S., Mumtaz M.W., Arshad M. Microbial biotechnology for decolorization of textile wastewaters. Rev. Environ. Sci. Bio/Technol. 2015; 14(1): 73-92. https://doi.org/10.1007/s11157-014-9344-4
  63. Aquino J.M., Rocha-Filho R.C., Ruotolo L.A.M., Bocchi N., Biaggio S.R. Electrochemical degradation of a real textile wastewater using β-PbO2 and DSA® anodes. Chem. Eng. J. 2014; 251: 138-45. https://doi.org/10.1016/j.cej.2014.04.032
  64. Khatri J., Nidheesh P.V., Anantha Singh T.S., Suresh Kumar M. Advanced oxidation processes based on zero-valent aluminium for treating textile wastewater. Chem. Eng. J. 2018; 348: 67-73. https://doi.org/10.1016/j.cej.2018.04.074
  65. Sandhya S. Biodegradation of Azo Dyes under Anaerobic Condition: Role of Azoreductase. Biodegradation of Azo Dyes. The Handbook of Environmental Chemistry. Berlin: Heidelberg; 2010: 39-57.
  66. Newman M. Fundamentals of Ecotoxicology. Boca Raton: CRC Press; 2009.
  67. Rehman K., Shahzad T., Sahar A., Hussain S., Mahmood F., Siddique M.H., et al. Effect of Reactive Black 5 azo dye on soil processes related to C and N cycling. PeerJ. 2018; 6: e4802. https://doi.org/10.7717/peerj.4802
  68. Orts F., del Río A.I., Molina J., Bonastre J., Cases F. Electrochemical treatment of real textile wastewater: Trichromy Procion HEXL®. J. Electroanal. Chem. 2018; 808: 387-94. https://doi.org/10.1016/j.jelechem.2017.06.051
  69. Кузин Е.Н., Кручинина Н.Е. Оценка эффективности использования комплексных коагулянтов в процессах очистки сточных вод машиностроительного производства. Известия высших учебных заведений. Серия: Химия и химическая технология. 2019; 62(10): 140-6. https://doi.org/10.6060/ivkkt.20196210.5939
  70. Mu’azu N.D., Jarrah N., Zubair M., Alagha O. Removal of phenolic compounds from water using sewage sludge-based activated carbon adsorption: a review. Int. J. Environ. Res. Public Health. 2017; 14(10): 1094. https://doi.org/10.3390/ijerph14101094
  71. Busca G., Berardinelli S., Resini C., Arrighi L. Technologies for the removal of phenol from fluid streams: A short review of recent developments. J. Hazard. Mater. 2008; 160(2-3): 265-88. https://doi.org/10.1016/j.jhazmat.2008.03.045
  72. Michałowicz J., Duda W. Phenols - sources and toxicity. Pol. J. Environ. Stud. 2007; 16(3): 347-62.
  73. Heudorf U., Mersch-Sundermann V., Angerer J. Phthalates: Toxicology and exposure. Int. J. Hyg. Environ. Health. 2007; 210(5): 623-34. https://doi.org/10.1016/j.ijheh.2007.07.011
  74. Oehlmann J., Oetken M., Schulte-Oehlmann U. A critical evaluation of the environmental risk assessment for plasticizers in the freshwater environment in Europe, with special emphasis on bisphenol A and endocrine disruption. Environ. Res. 2008; 108(2): 140-9. https://doi.org/10.1016/j.envres.2008.07.016
  75. Vandenberg L.N., Maffini M.V., Sonnenschein C., Rubin B.S., Soto A.M. Bisphenol-A and the great divide: A review of controversies in the field of endocrine disruption. Endocr. Rev. 2009; 30(1): 75-95. https://doi.org/10.1210/er.2008-0021
  76. Clara M., Windhofer G., Hartl W., Braun K., Simon M., Gans O., et al. Occurrence of phthalates in surface runoff, untreated and treated wastewater and fate during wastewater treatment. Chemosphere. 2010; 78(9): 1078-84. https://doi.org/10.1016/j.chemosphere.2009.12.052
  77. Çifci D.İ., Kınacı C., Arikan O.A. Occurrence of phthalates in sewage sludge from three wastewater treatment plants in Istanbul, Turkey. CLEAN - Soil, Air, Water. 2013; 41(9): 851-5. https://doi.org/10.1002/clen.201200212
  78. Huang J., Nkrumah P.N., Li Y., Appiah-Sefah G. Chemical behavior of phthalates under abiotic conditions in landfills. Rev. Environ. Contam. Toxicol. 2013; 224: 39-52. https://doi.org/10.1007/978-1-4614-5882-1_2
  79. Net S., Sempéré R., Delmont A., Paluselli A., Ouddane B. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ. Sci. Technol. 2015; 49(7): 4019-35. https://doi.org/10.1021/es505233b
  80. Staples C.A., Dome P.B., Klecka G.M., Oblock S.T., Harris L.R. A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 1998; 36 (10): 2149-73. https://doi.org/10.1016/S0045-6535(97)10133-3
  81. Flint S., Markle T., Thompson S., Wallace E. Bisphenol A exposure, effects, and policy: A wildlife perspective. J. Environ. Manage. 2012; 104: 19-34. https://doi.org/10.1016/j.jenvman.2012.03.021
  82. Lee S., Liao C., Song G.J., Ra K., Kannan K., Moon H.B. Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea. Chemosphere. 2015; 119: 1000-6. https://doi.org/10.1016/j.chemosphere.2014.09.011
  83. Pookpoosa I., Jindal R., Morknoy D., Tantrakarnapa K. Occurrence and efficacy of bisphenol A (BPA) treatment in selected municipal wastewater treatment plants, Bangkok, Thailand. Water Sci. Technol. 2015; 72(3): 463-71. https://doi.org/10.2166/wst.2015.232
  84. Fent G., Hein W.J., Moendel M.J., Kubiak R. Fate of 14C-bisphenol A in soils. Chemosphere. 2003; 51(8): 735-6. https://doi.org/10.1016/S0045-6535(03)00100-0
  85. Vandenberg L.N. Exposure to bisphenol A in Canada: invoking the precautionary principle. CMAJ. 2011; 183(11): 1265-70. https://doi.org/10.1503/cmaj.101408
  86. Montes-Grajales D., Fennix-Agudelo M., Miranda-Castro W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci. Total Environ. 2017; 595: 601-14. https://doi.org/10.1016/j.scitotenv.2017.03.286
  87. Yuval A., Friedler E., Westphal J., Olsson O., Dubowski Y. Photodegradation of micropollutants using V-UV/UV-C processes; Triclosan as a model compound. Sci. Total Environ. 2017; 601-602: 397-404. https://doi.org/10.1016/j.scitotenv.2017.05.172
  88. Wang J., Tian Z., Huo Y., Yang M., Zheng X., Zhang Y. Monitoring of 943 organic micropollutants in wastewater from municipal wastewater treatment plants with secondary and advanced treatment processes. J. Environ. Sci. 2018; 67: 309-17. https://doi.org/10.1016/j.jes.2017.09.014
  89. Bock M., Lyndall J., Barber T., Fuchsman P., Perruchon E., Capdevielle M. Probabilistic application of a fugacity model to predict triclosan fate during wastewater treatment. Integr. Environ. Assess. Manag. 2010; 6(3): 393-404. https://doi.org/10.1897/IEAM_2009-070.1
  90. Kuznetsov V.V., Kapustin E.S., Pirogov A.V., Kurdin K.A., Filatova E.A., Kolesnikov V.A. An effective electrochemical destruction of non-ionic surfactants on bismuth-modified lead dioxide anodes for wastewater pretreatment. J. Solid State Electrochem. 2020; 24(1) 173-83. https://doi.org/10.1007/s10008-019-04483-3
  91. Czech B., Ćwikła-Bundyra W. Advanced oxidation processes in Triton X-100 and wash-up liquid removal from wastewater using modified TiO2/Al2O3 photocatalysts. Water Air Soil Pollut. 2012; 223(8): 4813-22. https://doi.org/10.1007/s11270-012-1237-y
  92. Гончарук В.В., Клищенко Р.Е., Корниенко И.В. Деструкция неионогенных ПАВвплазмохимическом реакторе. Химия и технология воды. 2017; 39(6): 642-50
  93. Šíma J., Holcová V. Removal of nonionic surfactants from wastewater using a constructed wetland. Chem. Biodivers. 2011; 8(10): 1819-32. https://doi.org/10.1002/cbdv.201100063
  94. Markle J.C., van Buuren B.H., Moran K., Barefoot A.C. Pyrethroid pesticides in municipal wastewater: A baseline survey of publicly owned treatment works facilities. In: Describing the Behavior and Effects of Pesticides in Urban and Agricultural Settings: Chapter 8. ACS Symposium Series, Volume 1168. American Chemical Society; 2014: 177-94. https://doi.org/10.1021/bk-2014-1168.ch008
  95. Eawag - Swiss Federal Institute of Aquatic Science and Technology. Parent-Transformation Product Pairs from Eawag. Available at: https://zenodo.org/record/3829088#.XzuQb-gzaUl
  96. Simon-Delso N., Amaral-Rogers V., Belzunces L.P., Bonmatin J.M., Chagnon M., Downs C., et al. Systemic insecticides (neonicotinoids and fipronil): trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2015; 22(1): 5-34. https://doi.org/10.1007/s11356-014-3470-y
  97. Ensminger M.P., Budd R., Kelley K.C., Goh K.S. Pesticide occurrence and aquatic benchmark exceedances in urban surface waters and sediments in three urban areas of California, USA, 2008-2011. Environ. Monit. Assess. 2013; 185(5): 3697-710. https://doi.org/10.1007/s10661-012-2821-8
  98. Budd R., Ensminger M., Wang D., Goh K.S. Monitoring Fipronil and Degradates in California Surface Waters, 2008-2013. J. Environ. Qual. 2015; 44(4): 1233-40. https://doi.org/10.2134/jeq2015.01.0018
  99. Hladik M.L., Kolpin D.W. First national-scale reconnaissance of neonicotinoid insecticides in streams across the USA. Environ. Chem. 2016; 13(1): 12-20. https://doi.org/10.1071/EN15061
  100. Sadaria A.M., Sutton R., Moran K.D., Teerlink J., Brown J.V., Halden R.U. Passage of fiproles and imidacloprid from urban pest control uses through wastewater treatment plants in northern California, USA. Environ. Toxicol. Chem. 2017; 36(6): 1473-82. https://doi.org/10.1002/etc.3673

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Савостикова О.Н., Мамонов Р.А., Тюрина И.А., Алексеева А.В., Николаева Н.И., 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 37884 от 02.10.2009.