Nanocelluloses: hazard characteristics and possible risks (literature review)
- Authors: Gmoshinski I.V.1, Schipelin V.A.1, Khotimchenko S.A.1,2
-
Affiliations:
- Federal Research Centre of Nutrition, Biotechnology and food Safety, Department of food toxicology and nanotechnology safety evaluation
- First Moscow State Medical University named after I.M. Sechenov of the Ministry of Health of the Russian Federation (Sechenov University), Department of Food Hygiene and Toxicology
- Issue: Vol 102, No 2 (2023)
- Pages: 181-190
- Section: PREVENTIVE TOXICOLOGY AND HYGIENIC STANDARTIZATION
- Published: 25.03.2023
- URL: https://archivog.com/0016-9900/article/view/638618
- DOI: https://doi.org/10.47470/0016-9900-2023-102-2-181-190
- ID: 638618
Cite item
Full Text
Abstract
Nanocelluloses (NCs) have broad application prospects in medicine as implants, cell scaffolds and dressings, in the production of composite materials and coatings, electronics, food and pharmaceutical products. The main types of NCs include nanofibrous (NFC), nanocrystalline (NCC) cellulose isolated from natural, predominantly plant materials, and bacterial nanocellulose (BNC) obtained by microbial synthesis. The production process of NC can include many factors potent of affecting their toxicological characteristics, such as residual amounts of chemicals and enzyme preparations used in the isolation and modification of NC, contamination of NC from natural sources with mycotoxins, heavy metals, pesticides, and dioxins. In the case of NCs of microbial origin, the question of the safety of the respective producer strains remains open, most of which are genetically modified. Special attention deserves the ability of NC to exhibit toxicity to living organisms, different from their chemical counterpart in its traditional form. Expanding the range of products containing NC in close contact with human, primarily food products, packaging materials, pharmacological preparations and medical materials, requires a thorough assessment of the possible risks associated with the impact of NC on the human body.
The purpose of the research is to review the literature over 2010 to 2021 on the potential risks associated with the toxic effects of NC on living organisms through various exposure routes.
Information is provided on toxicity in in vitro systems, in particular, the ability to induce oxidative stress and inflammation. There are presented results of studies on inhalation and oral toxicity in vivo, data on carcinogenicity, immune cell response to NC and its ability to induce immunological tolerance. Based on the results of a comparative analysis of the studies, various NC types were found to have little effect on cell viability d and acute toxicity in vivo, however, the conflicting results of studies of the pro-inflammatory and immunological effects of different NCs indicate the need for further long-term studies to establish the maximum inactive doses of NC, primarily, with their inhalation and oral intake.
Contribution. All co-authors made an equal contribution to the research and preparation of the article for publication.
Conflict of interest. The authors declare no conflicts of interest.
Acknowledgments. The search and analytical work were carried out using the funds of the state assignment grant as part of the Basic Research Program (subject of the Ministry of Education and Science of the Russian Federation No. 0410-2022-0003).
Received: August 5, 2022 / Accepted: December 8, 2022 / Published: March 25, 2023
About the authors
Ivan V. Gmoshinski
Federal Research Centre of Nutrition, Biotechnology and food Safety, Department of food toxicology and nanotechnology safety evaluation
Author for correspondence.
Email: gmosh@ion.ru
ORCID iD: 0000-0002-3671-6508
MD, PhD, DSci., Leading Researcher at the Laboratory of Food Toxicology and Safety Assessment of Nanotechnology, Federal Research Centre of Nutrition, Biotechnology and food Safety. Department of food toxicology and nanotechnology safety evaluation, Moscow, 109240, Russian Federation.
e-mail: gmosh@ion.ru
Russian FederationVladimir A. Schipelin
Federal Research Centre of Nutrition, Biotechnology and food Safety, Department of food toxicology and nanotechnology safety evaluation
Email: noemail@neicon.ru
ORCID iD: 0000-0002-0015-8735
Russian Federation
Sergey A. Khotimchenko
Federal Research Centre of Nutrition, Biotechnology and food Safety, Department of food toxicology and nanotechnology safety evaluation; First Moscow State Medical University named after I.M. Sechenov of the Ministry of Health of the Russian Federation (Sechenov University), Department of Food Hygiene and Toxicology
Email: noemail@neicon.ru
ORCID iD: 0000-0002-5340-9649
Russian Federation
References
- Dhali K., Ghasemlou M., Daver F., Cass P., Adhikari B. A review of nanocellulose as a new material towards environmental sustainability. Sci. Total Environ. 2021; 775: 145871. https://doi.org/10.1016/j.scitotenv.2021.145871
- Fastmarkets. Nanocellulose: Packaging Applications and Markets. Available at: https://www.fastmarkets.com/forest-products/special-studies/nanocellulose?utm_ss=nanocellulose+applications+and+markets
- Sharma A., Thakur M., Bhattacharya M., Mandal T., Goswami S. Commercial application of cellulose nano-composites – a review. Biotechnol. Rep. (Amst.). 2019; 21: e00316. https://doi.org/10.1016/j.btre.2019.e00316
- de Amorim J.D.P., de Souza K.C., Duarte C.R., da Silva Duarte I., de Assis Sales F.R., Silva G.S., et al. Plant and bacterial nanocellulose: production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ. Chem. Lett. 2020; 18(3): 851–69. https://doi.org/10.1007/s10311-020-00989-9
- Thomas P., Duolikun T., Rumjit N.P., Moosavi S., Lai C.W., Bin Johan M.R., et al. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. J. Mech. Behav. Biomed. Mater. 2020; 110: 103884. https://doi.org/10.1016/j.jmbbm.2020.103884
- Vasconcellos V.M., Farinas C.S., Ximenes E., Slininger P., Ladisch M. Adaptive laboratory evolution of nanocellulose-producing bacterium. Biotechnol. Bioeng. 2019; 116(8): 1923–33. https://doi.org/10.1002/bit.26997
- Stoudmann N., Schmutz M., Hirsch C., Nowack B., Som C. Human hazard potential of nanocellulose: quantitative insights from the literature. Nanotoxicology. 2020; 14(9): 1241–57. https://doi.org/10.1080/17435390.2020.1814440
- Bonwick G., Bradley E., Lock I., Romero R. Bio-based materials for use in food contact applications. In: Report to the Food Standards Agency. York, UK: Fera Science Ltd.; 2019.
- Michelin M., Gomes D.G., Romaní A., Polizeli M.L.T.M., Teixeira J.A. Nanocellulose production: exploring the enzymatic route and residues of pulp and paper industry. Molecules. 2020; 25(15): 3411. https://doi.org/10.3390/molecules25153411
- Karim Z., Afrin S., Husain Q., Danish R. Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit. Rev. Biotechnol. 2017; 37(3): 355–70. https://doi.org/10.3109/07388551.2016.1163322
- Gmoshinskiy I.V., Shipelin V.A., Khotimchenko S.A. Nanomaterials in food products and their package: Comparative analysis of risks and advantages. Analiz riska zdorov’yu. 2018; (4): 133–41. https://doi.org/10.21668/health.risk/2018.4.16.eng
- Endes C., Camarero-Espinosa S., Mueller S., Foster E.J., Petri-Fink A., Rothen-Rutishauser B., et al. A critical review of the current knowledge regarding the biological impact of nanocellulose. J. Nanobiotechnology. 2016; 14(1): 78. https://doi.org/10.1186/s12951-016-0230-9
- Male K.B., Leung A.C.W., Montes J., Kamen A., Luong J.H.T. Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge. Nanoscale. 2012; 4(4): 1373–9. https://doi.org/10.1039/c2nr11886f
- Sunasee R., Carson M., Despres H.W., Pacherille A., Nunez K.D., Ckless K. Analysis of the immune and antioxidant response of cellulose nanocrystals grafted with β-cyclodextrin in myeloid cell lines. J. Nanomater. 2019; 2019: 4751827. https://doi.org/10.1155/2019/4751827
- Sultan S., Mathew A.P. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. Nanoscale. 2018; 10(9): 4421–31. https://doi.org/10.1039/c7nr08966j
- Leppiniemi J.P., Lahtinen A., Paajanen R., Mahlberg S., Metsa-Kortelainen T., Pinomaa H., et al. 3D-printable bioactivated nanocellulosealginate hydrogels. ACS Appl. Mater. Interfaces. 2017; 9(26): 21959–70. https://doi.org/10.1021/acsami.7b02756
- Endes C., Mueller S., Kinnear C., Vanhecke D., Foster E.J., Petri-Fink A., et al. Fate of cellulose nanocrystal aerosols deposited on the lung cell surface in vitro. Biomacromolecules. 2015; 16(4): 1267–75. https://doi.org/10.1021/acs.biomac.5b00055
- Jeong S.I., Lee S.E., Yang H., Jin Y.H., Park C.S., Park Y.S. Toxicologic evaluation of bacterial synthesized cellulose in endothelial cells and animals. Mol. Cell Oxicol. 2010; 6(4): 373–80. https://doi.org/10.1007/s13273-010-0049-7
- Moreira S., Silva N.B., Almeida-Lima J., Rocha H.A., Medeiros S.R., Alves C. Jr., et al. BC nanofibres: in vitro study of genotoxicity and cell proliferation. Toxicol. Lett. 2009; 189(3): 235–41. https://doi.org/10.1016/j.toxlet.2009.06.849
- De Lima A., Cândido P., Fregonezi N.F., José A., Carvalho F., Trovatti E. TEMPO-oxidized cellulose nanofibers in vitro cyto-genotoxicity studies. BioNanoScience. 2020; 10: 766–72. https://doi.org/10.1007/s12668-020-00763-9
- Dong S., Hirani A.A., Colacino K.R., Lee Y.W., Roman M. Cytotoxicity and cellular uptake of cellulose nanocrystals. Nano LIFE. 2012; 02(03): 1241006. https://doi.org/10.1142/S1793984412410061
- Mahmoud K.A., Mena J.A., Male K.B., Hrapovic S., Kamen A., Luong J.H.T. Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals. ACS Appl. Mater. Interfaces. 2010; 2(10): 2924–32. https://doi.org/10.1021/am1006222
- Catalan J., Ilves M., Jarventaus H., Hannukainen K.S., Kontturi E., Vanhala E., et al. Genotoxic and immunotoxic effects of cellulose nanocrystals in vitro. Environ. Mol. Mutagen. 2015; 56(2): 171–82. https://doi.org/10.1002/em.21913
- Hanif Z., Ahmed F.R., Shin S.W., Kim Y.K., Um S.H. Size- and dose-dependent toxicity of cellulose nanocrystals (CNC) on human fibroblasts and colon adenocarcinoma. Colloids Surf. B Biointerfaces. 2014; 119: 162–5. https://doi.org/10.1016/j.colsurfb.2014.04.018
- Pereira M.M., Raposo N.R.B., Brayner R., Teixeira E.M., Oliveira V., Quintao C.C.R, et al. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers. Nanotechnology. 2013; 24(7): 075103. https://doi.org/10.1088/0957-4484/24/7/075103
- Čolić M., Mihajlović D., Mathew A., Naseri N., Kokol V. Cytocompatibility and immunomodulatory properties of wood based nanofibrillated cellulose. Cellulose. 2015; 22(1): 763–78. https://doi.org/10.1007/s10570-014-0524-8
- Endes C., Schmid O., Kinnear C., Mueller S., Camarero-Espinosa S., Vanhecke D., et al. An in vitro testing strategy towards mimicking the inhalation of high aspect ratio nanoparticles. Part. Fibre Toxicol. 2014; 11: 40. https://doi.org/10.1186/s12989-014-0040-x
- Menas A.L., Yanamala N., Farcas M.T., Russo M., Friend S., Fournier P.M., et al. Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: cytotoxicity or inflammation? Chemosphere. 2017; 171: 671–80. https://doi.org/10.1016/j.chemosphere.2016.12.105
- Ventura C., Lourenco A.F., Sousa-Uva A., Ferreira P.J.T., Silva M.J. Evaluating the genotoxicity of cellulose nanofibrils in a co-culture of human lung epithelial cells and monocyte-derived macrophages. Toxicol. Lett. 2018: 291: 173–83. https://doi.org/10.1016/j.toxlet.2018.04.013
- Vartiainen J., Pöhler T., Sirola K., Pylkkänen L., Alenius H., Hokkinen J., et al. Health and environmental safety aspects of friction grinding and spray drying of microfibrillated cellulose. Cellulose. 2011; 18(3): 775–86. https://doi.org/10.1007/s10570-011-9501-7
- Clift M.J.D., Foster E.J., Vanhecke D., Studer D., Wick P., Gehr P., et al. Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules. 2011; 12(10): 3666–73. https://doi.org/10.1021/bm200865j
- Lopes V.R., Sanchez-Martinez C., Strømme M., Ferraz N. In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect. Part. Fibre Toxicol. 2017; 14(1): 1–13. https://doi.org/10.1186/s12989-016-0182-0
- Ilves M., Vilske S., Aimonen K., Lindberg H.K., Pesonen S., Wedin I., et al. Nanofibrillated cellulose causes acute pulmonary inflammation that subsides within a month. Nanotoxicology. 2018; 12(7): 729–46. https://doi.org/10.1080/17435390.2018.1472312
- Bhattacharya K., Kiliç G., Costa P.M., Fadeel B. Cytotoxicity screening and cytokine profiling of nineteen nanomaterials enables hazard ranking and grouping based on inflammogenic potential. Nanotoxicology. 2017; 11(6): 809–26. https://doi.org/10.1080/17435390.2017.1363309
- Kovacs T., Naish V., O’Connor B., Blaise C., Gagne F., Hall L., et al. An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicology. 2010; 4(3): 255–70. https://doi.org/10.3109/17435391003628713
- Aimonen K., Suhonen S., Hartikainen M., Lopes V.R., Norppa H., Ferraz N., et al. Role of surface chemistry in the in vitro lung response to nanofibrillated cellulose. Nanomaterials (Basel). 2021; 11(2): 389. https://doi.org/10.3390/nano11020389
- de Lima R., Feitosa L.O., Maruyama C.R., Barga M.A., Yamawaki P.C., Vieira I.J., et al. Evaluation of the genotoxicity of cellulose nanofibers. Int. J. Nanomedicine. 2012; 7: 3555–65. https://doi.org/10.2147/ijn.s30596
- Hannukainen K.S., Suhonen S., Savolainen K., Norppa H. Genotoxicity of nanofibrillated cellulose in vitro as measured by enzyme comet assay. Toxicol. Lett. 2012; 211: S71. https://doi.org/10.1016/j.toxlet.2012.03.276
- Donaldson K., Murphy F.A., Duffin R., Poland C.A. Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part. Fibre Toxicol. 2010; 7: 5. https://doi.org/10.1186/1743-8977-7-5
- Shatkin J.A., Kim B. Cellulose nanomaterials: life cycle risk assessment, and environmental health and safety roadmap. Environ. Sci.: Nano. 2015; (2): 477–99. https://doi.org/10.1039/C5EN00059A
- Hadrup N., Bram K., Berthing T., Wol H., Bengtson S., Kofoed C., et al. Pulmonary effects of nano fibrillated celluloses in mice suggest that carboxylation lowers the inflammatory and acute phase responses. Environ. Toxicol. Pharmacol. 2019; 66: 116–25. https://doi.org/10.1016/j.etap.2019.01.003
- Park E.J., Khaliullin T.O., Shurin M.R., Kisin E.R., Yanamala N., Fadeel B., et al. Fibrous nanocellulose, crystalline nanocellulose, carbon nanotubes, and crocidolite asbestos elicit disparate immune responses upon pharyngeal aspiration in mice. J. Immunotoxicol. 2018; 15(1): 12–23. https://doi.org/10.1080/1547691x.2017.1414339
- Dobrovolskaia M.A., Shurin M., Shvedova A.A. Current understanding of interactions between nanoparticles and the immune system. Toxicol. Appl. Pharmacol. 2016; 299: 78–89. https://doi.org/10.1016/j.taap.2015.12.022
- Li Y., Fujita M., Boraschi D. Endotoxin contamination in nanomaterials leads to the misinterpretation of immunosafety results. Front. Immunol. 2017; 8: 472–7. https://doi.org/10.3389/fimmu.2017.00472
- ISO 29701:2010. Nanotechnologies — Endotoxin test on nanomaterial samples for in vitro systems — Limulus amebocyte lysate (LAL) test. Available at https://www.iso.org/standard/45640.html
- Becklake M.R. Asbestos-related diseases of lung and other organs – their epidemiology and implications for clinical practice. Am. Rev. Respir. Dis. 1976; 114(1): 187–227. https://doi.org/10.1164/arrd.1976.114.1.187
- Catalán J., Rydman E., Aimonen K., Hannukainen K.S., Suhonen S., Vanhala E., et al. Genotoxic and inflammatory effects of nanofibrillated cellulose in murine lungs. Mutagenesis. 2017; 32(1): 23–31. https://doi.org/10.1093/mutage/gew035
- Yanamala N., Farcas M.T., Hatfield M.K., Kisin E.R., Kagan V.E., Geraci C.L., et al. In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future. ACS Sustain. Chem. Eng. 2014; 2(7): 1691–8. https://doi.org/10.1021/sc500153k
- Shvedova A.A., Kisin E.R., Yanamala N., Farcas M.T., Menas A.L., Williams A., et al. Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Part. Fibre Toxicol. 2016; 13(1): 28. https://doi.org/10.1186/s12989-016-0140-x
- Farcas M.T., Kisin E.R., Menas A.L., Gutkin D.W., Star A., Reiner R.S., et al. Pulmonary exposure to cellulose nanocrystals caused deleterious effects to reproductive system in male mice. J. Toxicol. Environ. Health A. 2016; 79(21): 984–97. https://doi.org/10.1080/15287394.2016.1211045
- Shatkin J.A., Oberdorster G. Comment on Shvedova et al. Gender differences in murine pulmonary responses elicited by cellulose nanocrystals. Part. Fibre Toxicol. 2016; 13(1): 59. https://doi.org/10.1186/s12989-016-0170-4
- Kobayashi N., Izumi H., Morimoto Y. Review of toxicity studies of carbon nanotubes. J. Occup. Health. 2017; 59(5): 394–407. https://doi.org/10.1539/joh.17-0089-ra
- Silva-Carvalho R., Silva J.P., Ferreirinha P., Leitão A.F., Andrade F.K., Gil da Costa R.M., et al. Inhalation of bacterial cellulose nanofibrils triggers an inflammatory response and changes lung tissue morphology of mice. Toxicol. Res. 2019; 35(1): 45–63. https://doi.org/10.5487/tr.2019.35.1.045
- Ede J.D., Ong K.J., Goergen M., Rudie A., Pomeroy-Carter C.A., Shatkin J.A. Risk analysis of cellulose nanomaterials by inhalation: current state of science. Nanomaterials (Basel). 201; 9(3): 337. https://doi.org/10.3390/nano9030337
- Sai T., Fujita K. A review of pulmonary toxicity studies of nanocellulose. Inhal. Toxicol. 2020; 32(6): 231–9. https://doi.org/10.1080/08958378.2020.1770901
- Lopes V.R., Strømme M., Ferraz N. In vitro biological impact of nanocellulose fibers on human gut bacteria and gastrointestinal cells. Nanomaterials (Basel). 2020; 10(6): 1159. https://doi.org/10.3390/nano10061159
- DeLoid G.M., Cao X., Molina R.M., Silva D.I., Bhattacharya K., Ng K.W., et al. Toxicological effects of ingested nanocellulose in in vitro intestinal epithelium and in vivo rat models. Environ. Sci. Nano. 2019; 6(7): 2105–15. https://doi.org/10.1039/c9en00184k
- O’Connor B., Berry R., Goguen R. Commercialization of cellulose nanocrystal (NCCTM) production: a business case focusing on the importance of proactive ehs management. In: Nanotechnology Environmental Health and Safety: Risks, Regulation, and Management. Amsterdam: Elsevier Inc.; 2014.
- Ong K.J., Shatkin J.A., Nelson K., Ede J.D., Retsina T. Establishing the safety of novel bio-based cellulose nanomaterials for commercialization. NanoImpact. 2017; 6: 19–29. https://doi.org/10.1016/j.impact.2017.03.002
- Adewuyi A., Otuechere C.A., Adebayo O.L., Anazodo C., Pereira F.V. Renal toxicological evaluations of sulphonated nanocellulose from Khaya sengalensis seed in Wistar rats. Chem. Biol. Interact. 2018; 284: 56–68. https://doi.org/10.1016/j.cbi.2018.02.015
- Otuechere C.A., Adewuyi A., Adebayo O.L., Ebigwei I.A. In vivo hepatotoxicity of chemically modified nanocellulose in rats. Hum. Exp. Toxicol. 2020; 39(2): 212–23. https://doi.org/10.1177/0960327119881672
- Toyokuni S. Genotoxicity and carcinogenicity risk of carbon nanotubes. Adv. Drug Deliv. Rev. 2013; 65(15): 2098–110. https://doi.org/10.1016/j.addr.2013.05.011
- Pitkanen M., Kangas H., Laitinen O., Sneck A., Lahtinen P., Peresin M.S., et al. Characteristics and safety of nano-sized cellulose fibrils. Cellulose. 2014; 21: 3871–86. https://doi.org/10.1007/s10570-014-0397-x
- Čolić M., Tomić S., Bekić M. Immunological aspects of nanocellulose. Immunol. Lett. 2020; 222: 80–9. https://doi.org/10.1016/j.imlet.2020.04.004
- Kollar P., Zavalova V., Hosek J., Havelka P., Sopuch T., Karpisek M., et al. Cytotoxicity and effects on inflammatory response of modified types of cellulose in macrophage-like THP-1 cells. Int. Immunopharmacol. 2011; 11(8): 997–1001. https://doi.org/10.1016/j.intimp.2011.02.016
- Hua K., Ålander E., Lindström T., Mihranyan A., Strømme M., Ferraz N. Surface chemistry of nanocellulose fibers directs monocyte/macrophage response. Biomacromolecules. 2015; 16(9): 2787–95. https://doi.org/10.1021/acs.biomac.5b00727
- Nordli H.R., Pukstad B., Chinga-Carrasco G., Rokstad A.M. Ultrapure wood nanocellulose—assessments of coagulation and initial inflammation potential. ACS Appl. Bio Mater. 2019; 2(3): 1107–18. https://doi.org/10.1021/acsabm.8b00711
- Rashad A., Suliman S., Mustafa M., Pedersen T.Ø., Campodoni E., Sandri M., et al. Inflammatory responses and tissue reactions to wood-Based nanocellulose scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 2019; 97: 208–21. https://doi.org/10.1016/j.msec.2018.11.068
- Nishiguchi T., Taguchi A. Thixotropic, cell-infiltrative nanocellulose hydrogel that promotes in vivo tissue remodeling. ACS Biomater. Sci. Eng. 2020; 6(2): 946–58. https://doi.org/10.1021/acsbiomaterials.9b01549
- Wang X., Chang C.H., Jiang J., Liu Q., Liao Y.P., Lu J., et al. The crystallinity and aspect ratio of cellulose nanomaterials determine their pro-inflammatory and immune adjuvant effects in vitro and in vivo. Small. 2019; 15(42): e1901642. https://doi.org/10.1002/smll.201901642
- Sunasee R., Araoye E., Pyram D., Hemraz U.D., Boluk Y., Ckless K. Cellulose nanocrystal cationic derivative induces NLRP3 inflammasome-dependent IL-1β secretion associated with mitochondrial ROS production. Biochem. Biophys. Rep. 2015; 4: 1–9. https://doi.org/10.1016/j.bbrep.2015.08.008
- Guglielmo A., Sabra A., Elbery M., Cerveira M.M., Ghenov F., Sunasee R., et al. A mechanistic insight into curcumin modulation of the IL-1β secretion and NLRP3 S-glutathionylation induced by needle-like cationic cellulose nanocrystals in myeloid cells. Chem. Biol. Interact. 2017; 274: 1–12. https://doi.org/10.1016/j.cbi.2017.06.028
- Osorio M., Cañas A., Puerta J., Díaz L., Naranjo T., Ortiz I., et al. Ex vivo and in vivo biocompatibility assessment (blood and tissue) of three-dimensional bacterial nanocellulose biomaterials for soft tissue implants. Sci. Rep. 2019; 9(1): 10553. https://doi.org/10.1038/s41598-019-46918-x
- Xi Loh E.Y., Fauzi M.B., Ng M.H., Ng P.Y., Ng S.F., Ariffin H., et al. Cellular and molecular interaction of human dermal fibroblasts with bacterial nanocellulose composite hydrogel for tissue regeneration. ACS Appl. Mater. Interfaces. 2018; 10(46): 39532–43. https://doi.org/10.1021/acsami.8b16645
- Kim G.D., Yang H., Park H.R., Park C.S., Park Y.S., Lee S.E. Evaluation of immunoreactivity of in vitro and in vivo models against bacterial synthesized cellulose to be used as a prosthetic biomaterial. BioChip J. 2013; 7: 201–9. https://doi.org/10.1007/s13206-013-7302-9
- Tomić S., Kokol V., Mihajlović D., Mirčić A., Čolić M. Native cellulose nanofibrils induce immune tolerance in vitro by acting on dendritic cells. Sci. Rep. 2016; 6: 31618. https://doi.org/10.1038/srep31618
- Tomić S., Ilić N., Kokol V., Gruden-Movsesijan A., Mihajlović D., Bekić M., et al. Functionalization-dependent effects of cellulose nanofibrils on tolerogenic mechanisms of human dendritic cells. Int. J. Nanomedicine. 2018; 13: 6941–60. https://doi.org/10.2147/ijn.s183510
- Erdem J.S., Alswady-Hoff M., Ervik T.K., Skare Ø., Ellingsen D.G., Zienolddiny S. Cellulose nanocrystals modulate alveolar macrophage phenotype and phagocytic function. Biomaterials. 2019; 203: 31–42. https://doi.org/10.1016/j.biomaterials.2019.02.025
- Ferrer A., Pal L., Hubbe M. Nanocellulose in packaging: advances in barrier layer technologies. Ind. Crops Prod. 2017; 95: 574–82. https://doi.org/10.1016/j.indcrop.2016.11.012
- Fink H., Hong J., Drotz K., Risberg B., Sanchez J., Sellborn A. An in vitro study of blood compatibility of vascular grafts made of bacterial cellulose in comparison with conventionallyused graft materials. J. Biomed. Mater. Res. A, 2011; 97A(1): 52–8. https://doi.org/10.1002/jbm.a.33031
Supplementary files
