Polyampholite–Metal Complexes for Catalytic Processes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Polyampholyte–metal complexes based on polyacrylic acid; the aliphatic diamines ethylenediamine, 1,3-diaminopropane, and 1,4-diaminobutane; and Cu2+ was obtained by reacting aqueous solutions of polyampholytes and CuSO4. Using the method of simultaneous thermal analysis, it was found that the thermal degradation of the complexes occurs in three steps. The activation energy of thermal degradation of the polyampholyte–metal complexes is 22–99 kJ/mol. It was established by X-ray diffraction analysis that the products of thermal degradation of polyampholyte–metal complexes are heterogeneous systems composed of CuO and Cu2O phases, while catalysts based on them are heterogeneous systems consisting of Al2O3 and CuO phases. The size distribution of catalyst pores showed that the volume of pores with a diameter of less than 773 nm was 0.80–0.83 cm3/g, the specific surface area was 349–351 m2/g, and the predominant equivalent pore diameter was 6.2–6.3 nm. The mechanical crushing strength of catalyst pellets was found to be 7.1–7.3 MPa. In the process of CO oxidation to CO2, the catalyst began to exhibit its activity at 180–187°C; the complete conversion of CO in the oxidation reaction was achieved at 280–286°C. The performance of the obtained catalysts was 2.7–2.8 times higher than that of a reference sample.

Sobre autores

V. Lipin

Saint Petersburg State Institute of Technology

Email: ksuchayka@mail.ru
190013, St. Petersburg, Russia

T. Poshvina

Saint Petersburg State Institute of Technology

Email: ksuchayka@mail.ru
190013, St. Petersburg, Russia

K. Fedorova

Saint Petersburg State Institute of Technology

Email: ksuchayka@mail.ru
190013, St. Petersburg, Russia

A. Fadin

Saint Petersburg State Institute of Technology

Email: ksuchayka@mail.ru
190013, St. Petersburg, Russia

N. Maltseva

Saint Petersburg State Institute of Technology

Email: ksuchayka@mail.ru
190013, St. Petersburg, Russia

T. Vishnevskaya

Saint Petersburg State Institute of Technology

Autor responsável pela correspondência
Email: ksuchayka@mail.ru
190013, St. Petersburg, Russia

Bibliografia

  1. Ментбаева А.А. Дис. … д-ра философии. Астана: КазНУ им. аль-Фараби, 2012.
  2. Sultanov Y.M., Wöhrle D., Efendiev A.A. // J. Mol. Catal. A. 2006. V. 258. P. 79.
  3. Mart H. // Des. Monomers Polym. 2006. V. 9. P. 553.
  4. Kaya İ., Emdi D., Saçak M. // J. Inorg. Organomet. Polym. Mater. 2009. V. 19. P. 293.
  5. Şenol D., Kaya İ. // Arab. J. Sci. Eng. 2017. V. 42. № 6. P. 2386.
  6. Zheng T., Li L. // New J. Chem. 2018. V. 42. P. 2532.
  7. Wang D., Liu W., Bian F., Yu W. // New J. Chem. 2015. V. 39. P. 2055.
  8. Saladino R., Neri V., Mincione E., Filippone P. // Tetrahedron. 2002. V. 58. P. 8497.
  9. Kim H.S., Kim J.J., Kwon J.J., Chung M.J., Lee B.G., Jang H.G. // J. Catal. 2002. V. 205. P. 226.
  10. Leadbeater N., Marco M. // Chem. Rev. 2002. V. 102. P. 3235.
  11. Zheng T., Zhu M., Waqas M., Umair A., Zaheer M., Yang J., Duan X., Li L. // RSC Adv. 2018. V. 8. P. 38818.
  12. Yarapathi R.V., Kurva S., Tammishetti S. // Catal. Commun. 2004. V. 5. P. 511.
  13. Pardey A.J., Rojas A.D., Yánez J.E., Betancourt P., Scott C., Chinea C., Urbina C., Moronta D., Longo C. // Polyhedron. 2005. V. 24. № 4. P. 515.
  14. Syukri S., Hijazi A.K., Sakthivel A., Al-Hmaideen A., Kühn F.E. // Inorg. Chim. Acta. 2007. V. 360. № 1. P. 198.
  15. Haber J., Pamin K., Połtowicz J. // J. Mol. Catal. A. 2004. V. 224. № 1‒2. P. 155.
  16. Schuchardt U., Cardoso D., Sercheli R., Pereira R., Cruz R.S., Guenrreiro M.C., Mandelli D., Spinacé E.V., Pires E.L. // Appl. Catal. A. 2001. V. 211. № 1. P. 13.
  17. Kumar A., Mishra G.S., Kumar A. // J. Mol. Catal. A. 2003. V. 201. P. 183.
  18. Gao B., Kong D., Zhang Y. // J. Mol. Catal. A. 2008. V. 286. № 1‒2. P. 145.
  19. Kudaibergenov S.E., Ciferri A. // Macromol. Rapid Comm. 2007. V. 28. № 20. P. 1980.
  20. Xi X., Liu Y., Shi J., Cao S. // J. Mol. Catal. A. 2003. V. 192. № 1‒2. P. 5.
  21. Xiaoxuan G., Zhang F., Yang Z., Wei R., Gao L., Xiao G. // J. Micropor. Mesopor. Mater. 2023. V. 352. P. 112507.
  22. Kudaibergenov S.E., Dzhardimalieva G.I. // Polymers. 2020. V. 12. № 3. P. 572.
  23. Martínez J.M.L., Denis M.F.L., Piehl L.L., Celis E.R. de, Buldain G.Y., Dall’Orto V.C. // Appl. Catal. B. 2008. V. 82. P. 279.
  24. Liotta L.F., Gruttadauria M., Carlo G.D., Perrini G., Librando V., Hazard J. // J. Hazardous Mater. 2009. V. 162. P. 592.
  25. Li X.H., Meng X.G., Pang Q.H., Liu S.D., Li J.M., Du J., Hu C.W. // J. Mol. Catal. A. 2010. V. 328. P. 90.
  26. Lupano L.V.L., Martínez J.M.L., Denis M.F.L., Piehl L.L., de Celis E.R., Buldain G.Y., Dall’Orto V.C. // Appl. Catal. A. 2013. V. 467. P. 347.
  27. Martínez J.M.L., Rodríguez-Castellón E., Torres Sánchez R.M., Denaday L.R., Buldain G.Y., Dall’Orto V.C. // J. Mol. Catal. A. 2011. V. 339. № 1‒2. P. 43.
  28. Липин В.А., Суставова Т.А., Евдокимов А.Н., Горкина Т.Е. А. с. 2714670 Россия // Б.И. 2020. № 5. С. 1.
  29. Тестишева Е.И., Мельников И.П., Сладковский Д.А. // Изв. СПбГТИ (ТУ). 2018. Т. 47. № 73. С. 17.
  30. Кам Т.Ш. Дис. … канд. хим. наук. СПб.: СПбГТИ (ТУ), 2022.
  31. Han X., Feng J., Dong F., Zhang X., Liu H., Hu Y. // Mol. Phys. 2014. V. 112. № 15. P. 2052.
  32. An H., Lu C., Wang P., Li W., Tan Y., Xu K., Liu C. // Polym. Bull. 2011. V. 67. P. 148.
  33. Polyampholytes: Synthesis, Characterization and Application / Ed. by E. Kudaibergenov. Boston: Springer, 2002.
  34. Kaushik P., Rawat K., Bohidar H. // Coll. Polym. Sci. 2019. V. 297. P. 953.
  35. Ryan G. Ezell, Charles L. McCormick // Appl. Polym. Sci. 2007. V. 104. № 5. P. 2818.
  36. Kudaibergenov S., Nuraje N. // Polymers. 2018. V. 10. № 10. P. 1146.
  37. Zurick M., Bernards M. // Appl. Polym. Sci. 2014. V. 131. № 6. P. 40069.
  38. Hui X., Tao R., Cui W., Zhang S., Li H. // Appl. Polym. Sci. 2013. V. 127. № 5. P. 4058.
  39. Gotzamanis G., Papadimitriou K., Tsitsilianis C. // Polym. Chem. 2016. V. 7. P. 2125.
  40. Kudaibergenov S.E. // Rev. J. Chem. 2020. V. 10. P. 17.
  41. Osovskaya I.I., Borodina A.M., Kurzin A.V., Roshchin V.I. // Rus. J. Bioorg. Chem. 2022. V. 48. P. 1529.
  42. You J., Hu H., Zhou J. // Cell. 2013. V. 20. P. 1179.
  43. Qiao C., Zhang J., Kong A. // Korea-Aust. Rheol. J. 2017. V. 29. P. 61.
  44. Kuzmenko V.A., Rusanova A.I., Odintsova O.I. // Rus. J. Appl. Chem. 2014. V. 87. P. 1197.
  45. Voron'ko N.G., Derkach S.R., Vovk M.A., Tolstoy P.M. // Carbohyd. Polym. 2016. V. 151. P. 1156.
  46. Deng D., Qi T., Cheng Y., Jin Y. // J. Mater. Sci.: Mater. Electron. 2014. V. 25. № 1. P. 393.
  47. Wang J., Ren J., Tang Q., Wang X. // Materials. 2022. V. 15. № 5. P. 1719.
  48. Kesavulu K., Sankar T.R., Ramana P.V. // Chem. Sci. Trans. 2013. V. 2. № 4. P. 1324.
  49. Abdullah N.A., Osman N., Sulaiman H., Oskar H. // Int. J. Electrochem. Sci. 2012. V. 7. P. 9405.
  50. Abdullah N.A., Marwani H.M. // Int. J. Electrochem. Sci. 2012. V. 7. P. 10084.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (107KB)
3.

Baixar (105KB)
4.

Baixar (24KB)
5.

Baixar (139KB)
6.

Baixar (187KB)
7.

Baixar (696KB)
8.

Baixar (357KB)
9.

Baixar (53KB)

Declaração de direitos autorais © В.А. Липин, Т.А. Пошвина, К.А. Федорова, А.Ф. Фадин, Н.В. Мальцева, Т.А. Вишневская, 2023