Decades Long Involvement of THP-1 Cells as a Model for Macrophage Research: A Comprehensive Review


Cite item

Full Text

Abstract

Over the years, researchers have endeavored to identify dependable and reproducible in vitro models for examining macrophage behavior under controlled conditions. The THP-1 cell line has become a significant and widely employed tool in macrophage research within these models. Originating from the peripheral blood of individuals with acute monocytic leuke-mia, this human monocytic cell line can undergo transformation into macrophage-like cells, closely mirroring primary human macrophages when exposed to stimulants. Macrophages play a vital role in the innate immune system, actively regulating inflammation, responding to infec-tions, and maintaining tissue homeostasis. A comprehensive understanding of macrophage bi-ology and function is crucial for gaining insights into immunological responses, tissue healing, and the pathogenesis of diseases such as viral infections, autoimmune disorders, and neoplastic conditions. This review aims to thoroughly evaluate and emphasize the extensive history of THP-1 cells as a model for macrophage research. Additionally, it will delve into the significance of THP-1 cells in advancing our comprehension of macrophage biology and their invaluable contributions to diverse scientific domains.

About the authors

Prakhar Sharma

Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU)

Email: info@benthamscience.net

Kaliyamurthi Venkatachalam

nstitute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU)

Email: info@benthamscience.net

Ambika Binesh

Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Auffray, C.; Sieweke, M.H.; Geissmann, F. Blood monocytes: Development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol., 2009, 27(1), 669-692. doi: 10.1146/annurev.immunol.021908.132557 PMID: 19132917
  2. Swirski, F.K.; Nahrendorf, M.; Etzrodt, M.; Wildgruber, M.; Cortez-Retamozo, V.; Panizzi, P.; Figueiredo, J.L.; Kohler, R.H.; Chudnovskiy, A.; Waterman, P.; Aikawa, E.; Mempel, T.R.; Libby, P.; Weissleder, R.; Pittet, M.J. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science, 2009, 325(5940), 612-616. doi: 10.1126/science.1175202 PMID: 19644120
  3. Serbina, N.V.; Jia, T.; Hohl, T.M.; Pamer, E.G. Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol., 2008, 26(1), 421-452. doi: 10.1146/annurev.immunol.26.021607.090326 PMID: 18303997
  4. Gordon, S. Do macrophage innate immune receptors enhance atherogenesis? Dev. Cell, 2003, 5(5), 666-668. doi: 10.1016/S1534-5807(03)00329-0 PMID: 14602065
  5. Grosjean, A.; Venteclef, N.; Dalmas, E. Understanding the heterogeneity and functions of metabolic tissue macrophages. In:In Seminars in cell & developmental biology; Academic Press, 2021, 119, pp. 130-139. doi: 10.1016/j.semcdb.2021.09.002
  6. Zhang, Y.; Li, Y.; Fu, X.; Wang, P.; Wang, Q.; Meng, W.; Wang, T.; Yang, J.; Chai, R. The detrimental and beneficial functions of macrophages after cochlear injury. Front. Cell Dev. Biol., 2021, 9, 631904. doi: 10.3389/fcell.2021.631904 PMID: 34458249
  7. Woo, Y.D.; Jeong, D.; Chung, D.H. Development and functions of alveolar macrophages. Mol. Cells, 2021, 44(5), 292-300. doi: 10.14348/molcells.2021.0058 PMID: 33972474
  8. Binesh, A. Decades‐long involvement of signalling pathways in cardiovascular research using zebrafish model and its global trends. Rev. Aquacult., 2021, 13(1), 556-566. doi: 10.1111/raq.12486
  9. Nasrollahzadeh, E.; Razi, S.; Keshavarz-Fathi, M.; Mazzone, M.; Rezaei, N. Pro-tumorigenic functions of macrophages at the primary, invasive and metastatic tumor site. Cancer Immunol. Immunother., 2020, 69(9), 1673-1697. doi: 10.1007/s00262-020-02616-6 PMID: 32500231
  10. Chow, A.; Brown, B.D.; Merad, M. Studying the mononuclear phagocyte system in the molecular age. Nat. Rev. Immunol., 2011, 11(11), 788-798. doi: 10.1038/nri3087 PMID: 22025056
  11. Yeung, T.; Terebiznik, M.; Yu, L.; Silvius, J.; Abidi, W.M.; Philips, M.; Levine, T.; Kapus, A.; Grinstein, S. Receptor activation alters inner surface potential during phagocytosis. Science, 2006, 313(5785), 347-351. doi: 10.1126/science.1129551 PMID: 16857939
  12. Fairn, G.D.; Ogata, K.; Botelho, R.J.; Stahl, P.D.; Anderson, R.A.; De Camilli, P.; Meyer, T.; Wodak, S.; Grinstein, S. An electrostatic switch displaces phosphatidylinositol phosphate kinases from the membrane during phagocytosis. J. Cell Biol., 2009, 187(5), 701-714. doi: 10.1083/jcb.200909025 PMID: 19951917
  13. Scott, C.C.; Dobson, W.; Botelho, R.J.; Coady-Osberg, N.; Chavrier, P.; Knecht, D.A.; Heath, C.; Stahl, P.; Grinstein, S. Phosphatidylinositol-4,5- bis phosphate hydrolysis directs actin remodeling during phagocytosis. J. Cell Biol., 2005, 169(1), 139-149. doi: 10.1083/jcb.200412162 PMID: 15809313
  14. Desjardins, M.; Huber, L.A.; Parton, R.G.; Griffiths, G. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J. Cell Biol., 1994, 124(5), 677-688. doi: 10.1083/jcb.124.5.677 PMID: 8120091
  15. Flannagan, R.S.; Cosío, G.; Grinstein, S. Antimicrobial mechanisms of phagocytes and bacterial evasion strategies. Nat. Rev. Microbiol., 2009, 7(5), 355-366. doi: 10.1038/nrmicro2128 PMID: 19369951
  16. Risso, A. Leukocyte antimicrobial peptides: multifunctional effector molecules of innate immunity. J. Leukoc. Biol., 2000, 68(6), 785-792. doi: 10.1189/jlb.68.6.785 PMID: 11129645
  17. Högger, P.; Dreier, J.; Droste, A.; Buck, F.; Sorg, C. Identification of the integral membrane protein RM3/1 on human monocytes as a glucocorticoid-inducible member of the scavenger receptor cysteine-rich family (CD163). J. Immunol., 1998, 161(4), 1883-1890. doi: 10.4049/jimmunol.161.4.1883 PMID: 9712057
  18. Stein, M.; Keshav, S.; Harris, N.; Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med., 1992, 176(1), 287-292. doi: 10.1084/jem.176.1.287 PMID: 1613462
  19. Geng, Y.J.; Hansson, G.K. Interferon-gamma inhibits scavenger receptor expression and foam cell formation in human monocyte-derived macrophages. J. Clin. Invest., 1992, 89(4), 1322-1330. doi: 10.1172/JCI115718 PMID: 1556191
  20. Mosser, D.M.; Handman, E. Treatment of murine macrophages with interferon-γ inhibits their ability to bind leishmania promastigotes. J. Leukoc. Biol., 1992, 52(4), 369-376. doi: 10.1002/jlb.52.4.369 PMID: 1402387
  21. Cohen, L.; David, B.; Cavaillon, J.M. Interleukin-3 enhances cytokine production by LPS-stimulated macrophages. Immunol. Lett., 1991, 28(2), 121-126. doi: 10.1016/0165-2478(91)90109-N PMID: 1885210
  22. Danis, V.A.; Kulesz, A.J.; Nelson, D.S.; Brooks, P.M. Cytokine regulation of human monocyte interleukin-1 (IL-1) production in vitro. Enhancement of IL-1 production by interferon (IFN) gamma, tumour necrosis factor-alpha, IL-2 and IL-1, and inhibition by IFN-alpha. Clin. Exp. Immunol., 2008, 80(3), 435-443. doi: 10.1111/j.1365-2249.1990.tb03306.x PMID: 2115419
  23. Hart, P.H.; Whitty, G.A.; Piccoli, D.S.; Hamilton, J.A. Synergistic activation of human monocytes by granulocyte-macrophage colony-stimulating factor and IFN-gamma. Increased TNF-alpha but not IL-1 activity. J. Immunol., 1988, 141(5), 1516-1521.
  24. Lew, W.O.; Oppenheim, J.J.; Matsushima, K. Analysis of the suppression of IL-1 alpha and IL-1 beta production in human peripheral blood mononuclear adherent cells by a glucocorticoid hormone. J. Immunol., 1988, 140(6), 1895-1902.
  25. Waage, A.; Bakke, O. Glucocorticoids suppress the production of tumour necrosis factor by lipopolysaccharide-stimulated human monocytes. Immunology, 1988, 63(2), 299-302. PMID: 3350575
  26. Fouqueray, B.; Philippe, C.; Amrani, A.; Perez, J.; Baud, L. Heat shock prevents lipopolysaccharide‐induced tumor necrosis factor‐α synthesis by rat mononuclear phagocytes. Eur. J. Immunol., 1992, 22(11), 2983-2987. doi: 10.1002/eji.1830221133 PMID: 1425922
  27. Brown, B.N.; Badylak, S.F. Expanded applications, shifting paradigms and an improved understanding of host–biomaterial interactions. Acta Biomater., 2013, 9(2), 4948-4955. doi: 10.1016/j.actbio.2012.10.025 PMID: 23099303
  28. Park, J.E.; Barbul, A. Understanding the role of immune regulation in wound healing. Am. J. Surg., 2004, 187(5), S11-S16. doi: 10.1016/S0002-9610(03)00296-4 PMID: 15147986
  29. Tsuchiya, S.; Yamabe, M.; Yamaguchi, Y.; Kobayashi, Y.; Konno, T.; Tada, K. Establishment and characterization of a human acute monocytic leukemia cell line (THP‐1). Int. J. Cancer, 1980, 26(2), 171-176. doi: 10.1002/ijc.2910260208 PMID: 6970727
  30. Tsuchiya, S.; Kobayashi, Y.; Goto, Y.; Okumura, H.; Nakae, S.; Konno, T.; Tada, K. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res., 1982, 42(4), 1530-1536. PMID: 6949641
  31. Qin, Z. The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis, 2012, 221(1), 2-11. doi: 10.1016/j.atherosclerosis.2011.09.003 PMID: 21978918
  32. Brück, W.; Porada, P.; Poser, S.; Rieckmann, P.; Hanefeld, F.; Kretzschmarch, H.A.; Lassmann, H. Monocyte/macrophage differentiation in early multiple sclerosis lesions. Ann. Neurol., 1995, 38(5), 788-796. doi: 10.1002/ana.410380514 PMID: 7486871
  33. Berges, C.; Naujokat, C.; Tinapp, S.; Wieczorek, H.; Höh, A.; Sadeghi, M.; Opelz, G.; Daniel, V. A cell line model for the differentiation of human dendritic cells. Biochem. Biophys. Res. Commun., 2005, 333(3), 896-907. doi: 10.1016/j.bbrc.2005.05.171 PMID: 15963458
  34. Bremner, T.A.; Chatterjee, D.; Han, Z.; Tsan, M.F.; Wyche, J.H. THP-1 monocytic leukemia cells express Fas ligand constitutively and kill Fas-positive Jurkat cells. Leuk. Res., 1999, 23(10), 865-870. doi: 10.1016/S0145-2126(99)00101-0 PMID: 10573130
  35. Abrahams, V.M.; Kim, Y.M.; Straszewski, S.L.; Romero, R.; Mor, G. Macrophages and apoptotic cell clearance during pregnancy. Am. J. Reprod. Immunol., 2004, 51(4), 275-282. doi: 10.1111/j.1600-0897.2004.00156.x PMID: 15212680
  36. Schwende, H.; Fitzke, E.; Ambs, P.; Dieter, P. Differences in the state of differentiation of THP-1 cells induced by phorbol ester and 1,25-dihydroxyvitamin D3. J. Leukoc. Biol., 1996, 59(4), 555-561. doi: 10.1002/jlb.59.4.555 PMID: 8613704
  37. Dobrovolskaia, M.A.; Vogel, S.N. Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect., 2002, 4(9), 903-914. doi: 10.1016/S1286-4579(02)01613-1 PMID: 12106783
  38. Gersuk, G.M.; Razai, L.W.; Marr, K.A. Methods of in vitro macrophage maturation confer variable inflammatory responses in association with altered expression of cell surface dectin-1. J. Immunol. Methods, 2008, 329(1-2), 157-166. doi: 10.1016/j.jim.2007.10.003 PMID: 17997408
  39. Reyes, L.; Davidson, M.K.; Thomas, L.C.; Davis, J.K. Effects of Mycoplasma fermentans incognitus on differentiation of THP-1 cells. Infect. Immun., 1999, 67(7), 3188-3192. doi: 10.1128/IAI.67.7.3188-3192.1999 PMID: 10377089
  40. Taylor, P.R.; Martinez-Pomares, L.; Stacey, M.; Lin, H-H.; Brown, G.D.; Gordon, S. Macrophage receptors and immune recognition. Annu. Rev. Immunol., 2005, 23(1), 901-944. doi: 10.1146/annurev.immunol.23.021704.115816 PMID: 15771589
  41. Martinez-Pomares, L.; Platt, N.; Mcknight, A.J.; da Silva, R.P.; Gordon, S. Macrophage membrane molecules: markers of tissue differentiation and heterogeneity. Immunobiology, 1996, 195(4-5), 407-416. doi: 10.1016/S0171-2985(96)80012-X PMID: 8933147
  42. Devitt, A.; Moffatt, O.D.; Raykundalia, C.; Capra, J.D.; Simmons, D.L.; Gregory, C.D. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature, 1998, 392(6675), 505-509. doi: 10.1038/33169 PMID: 9548256
  43. Triantafilou, M.; Triantafilou, K. Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster. Trends Immunol., 2002, 23(6), 301-304. doi: 10.1016/S1471-4906(02)02233-0 PMID: 12072369
  44. Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W., Jr Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest., 2003, 112(12), 1796-1808. doi: 10.1172/JCI200319246 PMID: 14679176
  45. Curat, C.A.; Miranville, A.; Sengenès, C.; Diehl, M.; Tonus, C.; Busse, R.; Bouloumié, A. From blood monocytes to adipose tissue-resident macrophages: Induction of diapedesis by human mature adipocytes. Diabetes, 2004, 53(5), 1285-1292. doi: 10.2337/diabetes.53.5.1285 PMID: 15111498
  46. Aldo, P.B.; Craveiro, V.; Guller, S.; Mor, G. Effect of culture conditions on the phenotype of THP‐1 monocyte cell line. Am. J. Reprod. Immunol., 2013, 70(1), 80-86. doi: 10.1111/aji.12129
  47. Nathan, C. Nitric oxide as a secretory product of mammalian cells. FASEB J., 1992, 6(12), 3051-3064. doi: 10.1096/fasebj.6.12.1381691 PMID: 1381691
  48. Nussler, A.K.; Billiar, T.R. Inflammation, immunoregulation, and inducible nitric oxide synthase. J. Leukoc. Biol., 1993, 54(2), 171-178. doi: 10.1002/jlb.54.2.171 PMID: 7689630
  49. Spencer, M.; Yao-Borengasser, A.; Unal, R.; Rasouli, N.; Gurley, C.M.; Zhu, B.; Peterson, C.A.; Kern, P.A. Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation. Am. J. Physiol. Endocrinol. Metab., 2010, 299(6), E1016-E1027. doi: 10.1152/ajpendo.00329.2010 PMID: 20841504
  50. Chanput, W.; Mes, J.J.; Savelkoul, H.F.J.; Wichers, H.J. Characterization of polarized THP-1 macrophages and polarizing ability of LPS and food compounds. Food Funct., 2013, 4(2), 266-276. doi: 10.1039/C2FO30156C PMID: 23135314
  51. Caras, I.; Tucureanu, C.; Lerescu, L.; Pitica, R.; Melinceanu, L.; Neagu, S.; Salageanu, A. Influence of tumor cell culture supernatants on macrophage functional polarization: in vitro models of macrophage-tumor environment interaction. Tumori, 2011, 97(5), 647-654. doi: 10.1177/030089161109700518 PMID: 22158498
  52. Park, E.K.; Jung, H.S.; Yang, H.I.; Yoo, M.C.; Kim, C.; Kim, K.S. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm. Res., 2007, 56(1), 45-50. doi: 10.1007/s00011-007-6115-5 PMID: 17334670
  53. Zhou, L.; Shen, L.; Hu, L.; Ge, H.; Pu, J.; Chai, D.; Shao, Q.; Wang, L.; Zeng, J.; He, B. Retinoid X receptor agonists inhibit phorbol-12-myristate-13-acetate (PMA)-induced differentiation of monocytic THP-1 cells into macrophages. Mol. Cell. Biochem., 2010, 335(1-2), 283-289. doi: 10.1007/s11010-009-0278-z PMID: 19784811
  54. Daigneault, M.; Preston, J.A.; Marriott, H.M.; Whyte, M.K.B.; Dockrell, D.H. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One, 2010, 5(1), e8668. doi: 10.1371/journal.pone.0008668 PMID: 20084270
  55. Balon, K.; Wiatrak, B. PC12 and THP-1 cell lines as neuronal and microglia model in neurobiological research. Appl. Sci. , 2021, 11(9), 3729. doi: 10.3390/app11093729
  56. Kawakami, A.; Aikawa, M.; Libby, P.; Alcaide, P.; Luscinskas, F.W.; Sacks, F.M. Apolipoprotein CIII in apolipoprotein B lipoproteins enhances the adhesion of human monocytic cells to endothelial cells. Circulation, 2006, 113(5), 691-700. doi: 10.1161/CIRCULATIONAHA.105.591743 PMID: 16461842
  57. Lomovskaya, Y.V.; Kobyakova, M.I.; Senotov, A.S.; Lomovsky, A.I.; Minaychev, V.V.; Fadeeva, I.S.; Shtatnova, D.Y.; Krasnov, K.S.; Zvyagina, A.I.; Akatov, V.S.; Fadeev, R.S. Macrophage-like THP-1 cells derived from high-density cell culture are resistant to TRAIL-induced cell death via down-regulation of death-receptors DR4 and DR5. Biomolecules, 2022, 12(2), 150. doi: 10.3390/biom12020150 PMID: 35204655
  58. Wang, L.; Zhu, L.; Duan, C.; Li, L.; Chen, G. Total saponin of Dioscorea collettii attenuates MSU crystal induced inflammation via inhibiting the activation of the NALP3 inflammasome and caspase 1 in THP 1 macrophages. Mol. Med. Rep., 2020, 21(6), 2466-2474. doi: 10.3892/mmr.2020.11035 PMID: 32236574
  59. Kritharides, L.; Christian, A.; Stoudt, G.; Morel, D.; Rothblat, G.H. Cholesterol metabolism and efflux in human THP-1 macrophages. Arterioscler. Thromb. Vasc. Biol., 1998, 18(10), 1589-1599. doi: 10.1161/01.ATV.18.10.1589 PMID: 9763531
  60. Nakagawa, K.; Zingg, J.M.; Kim, S.H.; Thomas, M.J.; Dolnikowski, G.G.; Azzi, A.; Miyazawa, T.; Meydani, M. Differential cellular uptake and metabolism of curcuminoids in monocytes/macrophages: regulatory effects on lipid accumulation. Br. J. Nutr., 2014, 112(1), 8-14. doi: 10.1017/S0007114514000567 PMID: 24725345
  61. Noronha, N.; Ehx, G.; Meunier, M.C.; Laverdure, J.P.; Thériault, C.; Perreault, C. Major multilevel molecular divergence between THP‐1 cells from different biorepositories. Int. J. Cancer, 2020, 147(7), 2000-2006. doi: 10.1002/ijc.32967 PMID: 32163592
  62. Petin, K.; Weiss, R.; Müller, G.; Garten, A.; Grahnert, A.; Sack, U.; Hauschildt, S. NAD metabolites interfere with proliferation and functional properties of THP-1 cells. Innate Immun., 2019, 25(5), 280-293. doi: 10.1177/1753425919844587 PMID: 31053044
  63. Spangenberg, SH; Zavareh, RB; Lairson, LL Protocol for highthroughput compound screening using flow cytometry in THP-1 cells. STAR protocols, 2021, 2(2), 100400.
  64. Schnoor, M.; Buers, I.; Sietmann, A.; Brodde, M.F.; Hofnagel, O.; Robenek, H.; Lorkowski, S. Efficient non-viral transfection of THP-1 cells. J. Immunol. Methods, 2009, 344(2), 109-115. doi: 10.1016/j.jim.2009.03.014 PMID: 19345690
  65. Bosshart, H.; Heinzelmann, M. Lipopolysaccharide-mediated cell activation without rapid mobilization of cytosolic free calcium. Mol. Immunol., 2004, 41(10), 1023-1028. doi: 10.1016/j.molimm.2004.05.003 PMID: 15302164
  66. Park, B.S.; Song, D.H.; Kim, H.M.; Choi, B.S.; Lee, H.; Lee, J.O. The structural basis of lipopolysaccharide recognition by the TLR4–MD-2 complex. Nature, 2009, 458(7242), 1191-1195. doi: 10.1038/nature07830 PMID: 19252480
  67. Steinbach, F.; Thiele, B. Phenotypic investigation of mononuclear phagocytes by flow cytometry. J. Immunol. Methods, 1994, 174(1-2), 109-122. doi: 10.1016/0022-1759(94)90015-9 PMID: 8083514
  68. Maeß, M.B.; Wittig, B.; Cignarella, A.; Lorkowski, S. Reduced PMA enhances the responsiveness of transfected THP-1 macrophages to polarizing stimuli. J. Immunol. Methods, 2014, 402(1-2), 76-81. doi: 10.1016/j.jim.2013.11.006 PMID: 24269601
  69. Gordon, S. Pattern recognition receptors: doubling up for the innate immune response. Cell, 2002, 111(7), 927-930. doi: 10.1016/S0092-8674(02)01201-1 PMID: 12507420
  70. Meghari, S.; Berruyer, C.; Lepidi, H.; Galland, F.; Naquet, P.; Mege, J.L. Vanin‐1 controls granuloma formation and macrophage polarization in Coxiella burnetii infection. Eur. J. Immunol., 2007, 37(1), 24-32. doi: 10.1002/eji.200636054 PMID: 17163446
  71. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol., 2003, 3(1), 23-35. doi: 10.1038/nri978 PMID: 12511873
  72. Gordon, S.; Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol., 2005, 5(12), 953-964. doi: 10.1038/nri1733 PMID: 16322748
  73. Noël, W.; Raes, G.; Hassanzadeh Ghassabeh, G.; De Baetselier, P.; Beschin, A. Alternatively activated macrophages during parasite infections. Trends Parasitol., 2004, 20(3), 126-133. doi: 10.1016/j.pt.2004.01.004 PMID: 15036034
  74. Wynn, T.A. Fibrotic disease and the TH1/TH2 paradigm. Nat. Rev. Immunol., 2004, 4(8), 583-594. doi: 10.1038/nri1412 PMID: 15286725
  75. Kzhyshkowska, J.; Workman, G.; Cardó-Vila, M.; Arap, W.; Pasqualini, R.; Gratchev, A.; Krusell, L.; Goerdt, S.; Sage, E.H. Novel function of alternatively activated macrophages: stabilin-1-mediated clearance of SPARC. J. Immunol., 2006, 176(10), 5825-5832. doi: 10.4049/jimmunol.176.10.5825 PMID: 16670288
  76. Oeckinghaus, A.; Hayden, M.S.; Ghosh, S. Crosstalk in NF-κB signaling pathways. Nat. Immunol., 2011, 12(8), 695-708. doi: 10.1038/ni.2065 PMID: 21772278
  77. Schonthaler, H.B.; Guinea-Viniegra, J.; Wagner, E.F. Targeting inflammation by modulating the Jun/AP-1 pathway. Ann. Rheum. Dis., 2011, 70(1), i109-i112. doi: 10.1136/ard.2010.140533 PMID: 21339212
  78. Krausgruber, T.; Blazek, K.; Smallie, T.; Alzabin, S.; Lockstone, H.; Sahgal, N.; Hussell, T.; Feldmann, M.; Udalova, I.A. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol., 2011, 12(3), 231-238. doi: 10.1038/ni.1990 PMID: 21240265
  79. Ohmori, Y.; Hamilton, T.A. IL-4-induced STAT6 suppresses IFN-gamma-stimulated STAT1-dependent transcription in mouse macrophages. J. Immunol., 1997, 159(11), 5474-5482.
  80. Satoh, T.; Takeuchi, O.; Vandenbon, A.; Yasuda, K.; Tanaka, Y.; Kumagai, Y.; Miyake, T.; Matsushita, K.; Okazaki, T.; Saitoh, T.; Honma, K.; Matsuyama, T.; Yui, K.; Tsujimura, T.; Standley, D.M.; Nakanishi, K.; Nakai, K.; Akira, S. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol., 2010, 11(10), 936-944. doi: 10.1038/ni.1920 PMID: 20729857
  81. Odegaard, J.I.; Ricardo-Gonzalez, R.R.; Goforth, M.H.; Morel, C.R.; Subramanian, V.; Mukundan, L.; Eagle, A.R.; Vats, D.; Brombacher, F.; Ferrante, A.W.; Chawla, A. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature, 2007, 447(7148), 1116-1120. doi: 10.1038/nature05894 PMID: 17515919
  82. Ruffell, D.; Mourkioti, F.; Gambardella, A.; Kirstetter, P.; Lopez, R.G.; Rosenthal, N.; Nerlov, C.A. CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc. Natl. Acad. Sci. , 2009, 106(41), 17475-17480. doi: 10.1073/pnas.0908641106 PMID: 19805133
  83. Xu, L.L.; Warren, M.K.; Rose, W.L.; Gong, W.; Wang, J.M. Human recombinant monocyte chemotactic protein and other c-c chemokines bind and induce directional migration of dendritic cells in vitro. J. Leukoc. Biol., 1996, 60(3), 365-371. doi: 10.1002/jlb.60.3.365 PMID: 8830793
  84. Cotton, M.; Claing, A. G protein-coupled receptors stimulation and the control of cell migration. Cell. Signal., 2009, 21(7), 1045-1053. doi: 10.1016/j.cellsig.2009.02.008 PMID: 19249352
  85. Elomaa, O.; Kangas, M.; Sahlberg, C.; Tuukkanen, J.; Sormunen, R.; Liakka, A.; Thesleff, I.; Kraal, G.; Tryggvason, K. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. Cell, 1995, 80(4), 603-609. doi: 10.1016/0092-8674(95)90514-6 PMID: 7867067
  86. O’Neill, L.A.J.; Golenbock, D.; Bowie, A.G. The history of Toll-like receptors redefining innate immunity. Nat. Rev. Immunol., 2013, 13(6), 453-460. doi: 10.1038/nri3446 PMID: 23681101
  87. Bertin, J.; Nir, W.J.; Fischer, C.M.; Tayber, O.V.; Errada, P.R.; Grant, J.R.; Keilty, J.J.; Gosselin, M.L.; Robison, K.E.; Wong, G.H.W.; Glucksmann, M.A.; DiStefano, P.S. Human CARD4 protein is a novel CED-4/Apaf-1 cell death family member that activates NF-kappaB. J. Biol. Chem., 1999, 274(19), 12955-12958. doi: 10.1074/jbc.274.19.12955 PMID: 10224040
  88. Inohara, N.; Koseki, T.; del Peso, L.; Hu, Y.; Yee, C.; Chen, S.; Carrio, R.; Merino, J.; Liu, D.; Ni, J.; Núñez, G. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J. Biol. Chem., 1999, 274(21), 14560-14567. doi: 10.1074/jbc.274.21.14560 PMID: 10329646
  89. Minakami, R.; Sumimotoa, H. Phagocytosis-coupled activation of the superoxide-producing phagocyte oxidase, a member of the NADPH oxidase (nox) family. Int. J. Hematol., 2006, 84(3), 193-198. doi: 10.1532/IJH97.06133 PMID: 17050190
  90. El-Gayar, S.; Thüring-Nahler, H.; Pfeilschifter, J.; Röllinghoff, M.; Bogdan, C. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J. Immunol., 2003, 171(9), 4561-4568. doi: 10.4049/jimmunol.171.9.4561 PMID: 14568929
  91. Mostowy, S.; Bonazzi, M.; Hamon, M.A.; Tham, T.N.; Mallet, A.; Lelek, M.; Gouin, E.; Demangel, C.; Brosch, R.; Zimmer, C.; Sartori, A.; Kinoshita, M.; Lecuit, M.; Cossart, P. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe, 2010, 8(5), 433-444. doi: 10.1016/j.chom.2010.10.009 PMID: 21075354
  92. Deretic, V.; Saitoh, T.; Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol., 2013, 13(10), 722-737. doi: 10.1038/nri3532 PMID: 24064518
  93. Deng, B.; Wehling-Henricks, M.; Villalta, S.A.; Wang, Y.; Tidball, J.G. IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J. Immunol., 2012, 189(7), 3669-3680. doi: 10.4049/jimmunol.1103180 PMID: 22933625
  94. Troidl, C.; Möllmann, H.; Nef, H.; Masseli, F.; Voss, S.; Szardien, S.; Willmer, M.; Rolf, A.; Rixe, J.; Troidl, K.; Kostin, S.; Hamm, C.; Elsässer, A. Classically and alternatively activated macrophages contribute to tissue remodelling after myocardial infarction. J. Cell. Mol. Med., 2009, 13(9b), 3485-3496. doi: 10.1111/j.1582-4934.2009.00707.x PMID: 19228260
  95. Beutler, B.; Rietschel, E.T. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol., 2003, 3(2), 169-176. doi: 10.1038/nri1004 PMID: 12563300
  96. Medzhitov, R.; Janeway, C.J. Jr Innate immune recognition: mechanisms and pathways. Immunol. Rev., 2000, 173(1), 89-97. doi: 10.1034/j.1600-065X.2000.917309.x PMID: 10719670
  97. Monick, M.M.; Carter, A.B.; Robeff, P.K.; Flaherty, D.M.; Peterson, M.W.; Hunninghake, G.W. Lipopolysaccharide activates Akt in human alveolar macrophages resulting in nuclear accumulation and transcriptional activity of β-catenin. J. Immunol., 2001, 166(7), 4713-4720. doi: 10.4049/jimmunol.166.7.4713 PMID: 11254732
  98. Monick, M.M.; Robeff, P.K.; Butler, N.S.; Flaherty, D.M.; Carter, A.B.; Peterson, M.W.; Hunninghake, G.W. Phosphatidylinositol 3-kinase activity negatively regulates stability of cyclooxygenase 2 mRNA. J. Biol. Chem., 2002, 277(36), 32992-33000. doi: 10.1074/jbc.M203218200 PMID: 12072439
  99. Zhang, Z.; Tang, J.; Cui, X.; Qin, B.; Zhang, J.; Zhang, L.; Zhang, H.; Liu, G.; Wang, W.; Zhang, J. New insights and novel therapeutic potentials for macrophages in myocardial infarction. Inflammation, 2021, 44(5), 1696-1712. doi: 10.1007/s10753-021-01467-2 PMID: 33866463
  100. Moskalik, A.; Niderla-Bielińska, J.; Ratajska, A. Multiple roles of cardiac macrophages in heart homeostasis and failure. Heart Fail. Rev., 2022, 27(4), 1413-1430. doi: 10.1007/s10741-021-10156-z PMID: 34387811
  101. Heidt, T.; Courties, G.; Dutta, P.; Sager, H.B.; Sebas, M.; Iwamoto, Y.; Sun, Y.; Da Silva, N.; Panizzi, P.; van der Laan, A.M.; Swirski, F.K.; Weissleder, R.; Nahrendorf, M. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ. Res., 2014, 115(2), 284-295. doi: 10.1161/CIRCRESAHA.115.303567 PMID: 24786973
  102. Dick, S.A.; Macklin, J.A.; Nejat, S.; Momen, A.; Clemente-Casares, X.; Althagafi, M.G.; Chen, J.; Kantores, C.; Hosseinzadeh, S.; Aronoff, L.; Wong, A.; Zaman, R.; Barbu, I.; Besla, R.; Lavine, K.J.; Razani, B.; Ginhoux, F.; Husain, M.; Cybulsky, M.I.; Robbins, C.S.; Epelman, S. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol., 2019, 20(1), 29-39. doi: 10.1038/s41590-018-0272-2 PMID: 30538339
  103. Kain, D.; Amit, U.; Yagil, C.; Landa, N.; Naftali-Shani, N.; Molotski, N.; Aviv, V.; Feinberg, M.S.; Goitein, O.; Kushnir, T.; Konen, E.; Epstein, F.H.; Yagil, Y.; Leor, J. Macrophages dictate the progression and manifestation of hypertensive heart disease. Int. J. Cardiol., 2016, 203, 381-395. doi: 10.1016/j.ijcard.2015.10.126 PMID: 26539962
  104. Hulsmans, M.; Sager, H.B.; Roh, J.D.; Valero-Muñoz, M.; Houstis, N.E.; Iwamoto, Y.; Sun, Y.; Wilson, R.M.; Wojtkiewicz, G.; Tricot, B.; Osborne, M.T.; Hung, J.; Vinegoni, C.; Naxerova, K.; Sosnovik, D.E.; Zile, M.R.; Bradshaw, A.D.; Liao, R.; Tawakol, A.; Weissleder, R.; Rosenzweig, A.; Swirski, F.K.; Sam, F.; Nahrendorf, M. Cardiac macrophages promote diastolic dysfunction. J. Exp. Med., 2018, 215(2), 423-440. doi: 10.1084/jem.20171274 PMID: 29339450
  105. Steinberg, G.R.; Schertzer, J.D. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: implications for diabetes and cardiovascular disease. Immunol. Cell Biol., 2014, 92(4), 340-345. doi: 10.1038/icb.2014.11 PMID: 24638063
  106. Mantovani, A; Allavena, P; Sica, A; Balkwill, F. Cancer-related inflammation. nature, 2008, 454(7203), 436-444.
  107. Boussiotis, V.A.; Chatterjee, P.; Li, L. Biochemical signaling of PD-1 on T cells and its functional implications. Cancer J., 2014, 20(4), 265-271. doi: 10.1097/PPO.0000000000000059 PMID: 25098287
  108. Barkal, A.A.; Weiskopf, K.; Kao, K.S.; Gordon, S.R.; Rosental, B.; Yiu, Y.Y.; George, B.M.; Markovic, M.; Ring, N.G.; Tsai, J.M.; McKenna, K.M.; Ho, P.Y.; Cheng, R.Z.; Chen, J.Y.; Barkal, L.J.; Ring, A.M.; Weissman, I.L.; Maute, R.L. Engagement of MHC class I by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy. Nat. Immunol., 2018, 19(1), 76-84. doi: 10.1038/s41590-017-0004-z PMID: 29180808
  109. Okazawa, H.; Motegi, S.; Ohyama, N.; Ohnishi, H.; Tomizawa, T.; Kaneko, Y.; Oldenborg, P.A.; Ishikawa, O.; Matozaki, T. Negative regulation of phagocytosis in macrophages by the CD47-SHPS-1 system. J. Immunol., 2005, 174(4), 2004-2011. doi: 10.4049/jimmunol.174.4.2004 PMID: 15699129
  110. Ogden, C.A.; deCathelineau, A.; Hoffmann, P.R.; Bratton, D.; Ghebrehiwet, B.; Fadok, V.A.; Henson, P.M. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med., 2001, 194(6), 781-796. doi: 10.1084/jem.194.6.781 PMID: 11560994
  111. Zheng, P.; Luo, Q.; Wang, W.; Li, J.; Wang, T.; Wang, P.; Chen, L.; Zhang, P.; Chen, H.; Liu, Y.; Dong, P.; Xie, G.; Ma, Y.; Jiang, L.; Yuan, X.; Shen, L. Tumor-associated macrophages-derived exosomes promote the migration of gastric cancer cells by transfer of functional Apolipoprotein E. Cell Death Dis., 2018, 9(4), 434. doi: 10.1038/s41419-018-0465-5 PMID: 29567987
  112. Binenbaum, Y.; Fridman, E.; Yaari, Z.; Milman, N.; Schroeder, A.; Ben David, G.; Shlomi, T.; Gil, Z. Transfer of miRNA in macrophage-derived exosomes induces drug resistance in pancreatic adenocarcinoma. Cancer Res., 2018, 78(18), 5287-5299. doi: 10.1158/0008-5472.CAN-18-0124 PMID: 30042153
  113. Kaneda, M.M.; Messer, K.S.; Ralainirina, N.; Li, H.; Leem, C.J.; Gorjestani, S.; Woo, G.; Nguyen, A.V.; Figueiredo, C.C.; Foubert, P.; Schmid, M.C.; Pink, M.; Winkler, D.G.; Rausch, M.; Palombella, V.J.; Kutok, J.; McGovern, K.; Frazer, K.A.; Wu, X.; Karin, M.; Sasik, R.; Cohen, E.E.W.; Varner, J.A. PI3Kγ is a molecular switch that controls immune suppression. Nature, 2016, 539(7629), 437-442. doi: 10.1038/nature19834 PMID: 27642729
  114. An, C.; Wen, J.; Hu, Z.; Mitch, W.E.; Wang, Y. Phosphoinositide 3-kinase γ deficiency attenuates kidney injury and fibrosis in angiotensin II–induced hypertension. Nephrol. Dial. Transplant., 2020, 35(9), 1491-1500. doi: 10.1093/ndt/gfaa062 PMID: 32500132
  115. Amano, M.T.; Castoldi, A.; Andrade-Oliveira, V.; Latancia, M.T.; Terra, F.F.; Correa-Costa, M.; Breda, C.N.S.; Felizardo, R.J.F.; Pereira, W.O.; da Silva, M.B.; Miyagi, M.Y.S.; Aguiar, C.F.; Hiyane, M.I.; Silva, J.S.; Moura, I.C.; Camara, N.O.S. The lack of PI3Kγ favors M1 macrophage polarization and does not prevent kidney diseases progression. Int. Immunopharmacol., 2018, 64, 151-161. doi: 10.1016/j.intimp.2018.08.020 PMID: 30176533
  116. Markó, L.; Vigolo, E.; Hinze, C.; Park, J.K.; Roël, G.; Balogh, A.; Choi, M.; Wübken, A.; Cording, J.; Blasig, I.E.; Luft, F.C.; Scheidereit, C.; Schmidt-Ott, K.M.; Schmidt-Ullrich, R.; Müller, D.N. Tubular epithelial NF-κB activity regulates ischemic AKI. J. Am. Soc. Nephrol., 2016, 27(9), 2658-2669. doi: 10.1681/ASN.2015070748 PMID: 26823548
  117. Banerjee, S.; Biehl, A.; Gadina, M.; Hasni, S.; Schwartz, D.M. JAK–STAT signaling as a target for inflammatory and autoimmune diseases: current and future prospects. Drugs, 2017, 77(5), 521-546. doi: 10.1007/s40265-017-0701-9 PMID: 28255960
  118. Wang, S.; Zhang, C.; Li, J.; Niyazi, S.; Zheng, L.; Xu, M.; Rong, R.; Yang, C.; Zhu, T. Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization. Cell Death Dis., 2017, 8(4), e2725. doi: 10.1038/cddis.2017.104 PMID: 28383559
  119. Zhu, M.; Wang, L.; Yang, J.; Xie, K.; Liu, S.; Xu, C.; Wang, J.; Gu, L.; Ni, Z.; Xu, G.; Che, M. Erythropoietin ameliorates lung injury by accelerating pulmonary endothelium cell proliferation via Janus kinase-signal transducer and activator of transcription 3 pathway after kidney ischemia and reperfusion injury. In:In Transplantation proceedings; Elsevier, 2019, 51, pp. (3)972-978. doi: 10.1016/j.transproceed.2019.01.059
  120. Kaur, C.; Hao, A.J.; Wu, C.H.; Ling, E.A. Origin of microglia. Microsc. Res. Tech., 2001, 54(1), 2-9. doi: 10.1002/jemt.1114 PMID: 11526953
  121. Ferrari, D.; Chiozzi, P.; Falzoni, S.; Dal Susino, M.; Collo, G.; Buell, G.; Di Virgilio, F. ATP-mediated cytotoxicity in microglial cells. Neuropharmacology, 1997, 36(9), 1295-1301. doi: 10.1016/S0028-3908(97)00137-8 PMID: 9364484
  122. Tedesco, S.; De Majo, F.; Kim, J.; Trenti, A.; Trevisi, L.; Fadini, G.P.; Bolego, C.; Zandstra, P.W.; Cignarella, A.; Vitiello, L. Convenience versus biological significance: are PMA-differentiated THP-1 cells a reliable substitute for blood-derived macrophages when studying in vitro polarization? Front. Pharmacol., 2018, 9, 71. doi: 10.3389/fphar.2018.00071 PMID: 29520230
  123. Hoppenbrouwers, T.; Bastiaan-Net, S.; Garssen, J.; Pellegrini, N.; Willemsen, L.E.M.; Wichers, H.J. Functional differences between primary monocyte-derived and THP-1 macrophages and their response to LCPUFAs. PharmaNutrition, 2022, 22, 100322. doi: 10.1016/j.phanu.2022.100322
  124. Schildberger, A; Rossmanith, E; Eichhorn, T; Strassl, K; Weber, V Monocytes, peripheral blood mononuclear cells, and THP-1 cells exhibit different cytokine expression patterns following stimulation with lipopolysaccharide. Med. inflamm., 2013, 2013, 697972.
  125. Hijiya, N.; Miyake, K.; Akashi, S.; Matsuura, K.; Higuchi, Y.; Yamamoto, S. Possible involvement of toll-like receptor 4 in endothelial cell activation of larger vessels in response to lipopolysaccharide. Pathobiology, 2002, 70(1), 18-25. doi: 10.1159/000066000 PMID: 12415188
  126. Binesh, A.; Devaraj Sivasitambaram, N.; Halagowder, D. Monocytes treated with ciprofloxacin and oxyLDL express myristate, priming atherosclerosis. J. Biochem. Mol. Toxicol., 2020, 34(3), e22442. doi: 10.1002/jbt.22442 PMID: 31926051
  127. Gao, X.X.; Wang, B.X.; Fei, X.F.; Zhang, J.; Gong, Y.J.; Minami, M.; Nagata, T.; Ikejima, T. Effects of polysaccharides (FI0-c) from mycelium of Ganoderma tsugae on proinflammatory cytokine production by THP-1 cells and human PBMC (II). Acta Pharmacol. Sin., 2000, 21(12), 1186-1192. PMID: 11603298
  128. Han, X.Q.; Chung Lap Chan, B.; Dong, C.X.; Yang, Y.H.; Ko, C.H.; Gar-Lee Yue, G.; Chen, D.; Wong, C.K.; Bik-San Lau, C.; Tu, P.F.; Shaw, P.C.; Fung, K.P.; Leung, P.C.; Hsiao, W.L.; Han, Q.B. Isolation, structure characterization, and immunomodulating activity of a hyperbranched polysaccharide from the fruiting bodies of Ganoderma sinense. J. Agric. Food Chem., 2012, 60(17), 4276-4281. doi: 10.1021/jf205056u PMID: 22500548
  129. Schroecksnadel, S.; Gostner, J.; Schennach, H. überall, F.; Fuchs, D.; Jenny, M. Peripheral blood mononuclear cells versus myelomonocytic cell line THP-1 to test for immumodulatory properties of chemicals. J. Bionanosci., 2012, 6(2), 134-141. doi: 10.1166/jbns.2012.1083
  130. Chanput, W.; Mes, J.J.; Wichers, H.J. THP-1 cell line: An in vitro cell model for immune modulation approach. Int. Immunopharmacol., 2014, 23(1), 37-45. doi: 10.1016/j.intimp.2014.08.002 PMID: 25130606
  131. Nascimento, C.R.; Rodrigues Fernandes, N.A.; Gonzalez Maldonado, L.A.; Rossa, Junior C. Comparison of monocytic cell lines U937 and THP-1 as macrophage models for in vitro studies. Biochem. Biophys. Rep., 2022, 32, 101383. doi: 10.1016/j.bbrep.2022.101383 PMID: 36420419
  132. Minafra, L.; Di Cara, G.; Albanese, N.N.; Cancemi, P. Proteomic differentiation pattern in the U937 cell line. Leuk. Res., 2011, 35(2), 226-236. doi: 10.1016/j.leukres.2010.07.040 PMID: 20801507
  133. Valdés López, J.F.; Urcuqui-Inchima, S. Synergism between phorbol-12-myristate-13-acetate and vitamin D3 in the differentiation of U937 cells to monocytes and macrophages. Morphologie, 2018, 102(338), 205-218. doi: 10.1016/j.morpho.2018.06.001 PMID: 30075941
  134. Odgerel, T.; Kikuchi, J.; Wada, T.; Shimizu, R.; Futaki, K.; Kano, Y.; Furukawa, Y. The FLT3 inhibitor PKC412 exerts differential cell cycle effects on leukemic cells depending on the presence of FLT3 mutations. Oncogene, 2008, 27(22), 3102-3110. doi: 10.1038/sj.onc.1210980 PMID: 18071308
  135. Lamichhane, P.P.; Puthavathana, P. PR8 virus harbouring H5N1 NS gene contributed for THP-1 cell tropism. Virusdisease, 2018, 29(4), 548-552. doi: 10.1007/s13337-018-0499-4 PMID: 30539061
  136. Chanput, W.; Peters, V.; Wichers, H. The Impact of Food Bioactives on Health: in vitro and ex vivo models; Springer, 2015.
  137. Song, J.; Seo, Y.; Park, H. Pinosylvin enhances leukemia cell death via down‐regulation of AMPKα expression. Phytother. Res., 2018, 32(10), 2097-2104. doi: 10.1002/ptr.6156 PMID: 30027566
  138. Fernandes, C.; Horn, A., Jr; Lopes, B.F.; Bull, E.S.; Azeredo, N.F.B.; Kanashiro, M.M.; Borges, F.V.; Bortoluzzi, A.J.; Szpoganicz, B.; Pires, A.B.; Franco, R.W.A.; Almeida, J.C.A.; Maciel, L.L.F.; Resende, J.A.L.C.; Schenk, G. Induction of apoptosis in leukemia cell lines by new copper(II) complexes containing naphthyl groups via interaction with death receptors. J. Inorg. Biochem., 2015, 153, 68-87. doi: 10.1016/j.jinorgbio.2015.09.014 PMID: 26485179
  139. Platt, R.J.; Chen, S.; Zhou, Y.; Yim, M.J.; Swiech, L.; Kempton, H.R.; Dahlman, J.E.; Parnas, O.; Eisenhaure, T.M.; Jovanovic, M.; Graham, D.B.; Jhunjhunwala, S.; Heidenreich, M.; Xavier, R.J.; Langer, R.; Anderson, D.G.; Hacohen, N.; Regev, A.; Feng, G.; Sharp, P.A.; Zhang, F. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell, 2014, 159(2), 440-455. doi: 10.1016/j.cell.2014.09.014 PMID: 25263330
  140. Brzicova, T.; Javorkova, E.; Vrbova, K.; Zajicova, A.; Holan, V.; Pinkas, D.; Philimonenko, V.; Sikorova, J.; Klema, J.; Topinka, J.; Rossner, P. Jr Molecular responses in THP-1 macrophage-like cells exposed to diverse nanoparticles. Nanomaterials , 2019, 9(5), 687. doi: 10.3390/nano9050687 PMID: 31052583
  141. Chen, S.J.; Huang, W.C.; Shen, H.J.; Chen, R.Y.; Chang, H.; Ho, Y.S.; Tsai, P.J.; Chuang, L.T. Investigation of modulatory effect of pinolenic acid (PNA) on inflammatory responses in human THP-1 macrophage-like cell and mouse models. Inflammation, 2020, 43(2), 518-531. doi: 10.1007/s10753-019-01134-7 PMID: 31776889
  142. Wardyn, J.D.; Chan, A.S.Y.; Jeyasekharan, A.D. A robust protocol for CRISPR‐Cas9 gene editing in human suspension cell lines. Curr. Protoc., 2021, 1(11), e286. doi: 10.1002/cpz1.286 PMID: 34748280
  143. Farooq, U; Notani, D Optimized protocol to create deletion in adherent cell lines using CRISPR/Cas9 system. STAR protocols., 2021, 2(4), 100857.
  144. Sanjurjo-Soriano, C.; Erkilic, N.; Mamaeva, D.; Kalatzis, V. CRISPR/Cas9-mediated genome editing to generate clonal iPSC lines. In: Induced Pluripotent Stem (iPS) Cells: Methods and Protocols; Springer US: New York, NY, 2021; pp. 589-606.
  145. Auwerx, J.H.; Deeb, S.; Brunzell, J.D.; Peng, R.; Chait, A. Transcriptional activation of the lipoprotein lipase and apolipoprotein E genes accompanies differentiation in some human macrophage-like cell lines. Biochemistry, 1988, 27(8), 2651-2655. doi: 10.1021/bi00408a003 PMID: 3401441
  146. Pang, J.H.S.; Wu, C.J.; Chau, L.Y. Post-transcriptional regulation of H-ferritin gene expression in human monocytic THP-1 cells by protein kinase C. Biochem. J., 1996, 319(1), 185-189. doi: 10.1042/bj3190185 PMID: 8870667
  147. a) Liu, T.; Huang, T.; Li, J.; Li, A.; Li, C.; Huang, X.; Li, D.; Wang, S.; Liang, M. Optimization of differentiation and transcriptomic profile of THP-1 cells into macrophage by PMA. PLoS One, 2023, 18(7), e0286056. doi: 10.1371/journal.pone.0286056 PMID: 37459313; b) Ahn, CB.; Je, JY. Anti-inflammatory activity of the oriental herb medicine, Arisaema cum Bile, in LPS-induced PMA-differentiated THP-1 cells. Immunopharmacology and Immunotoxicology, 2012, 1;34(3), 379-84.
  148. Clouet, E.; Bechara, R.; Raffalli, C.; Damiens, M.H.; Groux, H.; Pallardy, M.; Ferret, P.J.; Kerdine-Römer, S. The THP-1 cell toolbox: A new concept integrating the key events of skin sensitization. Arch. Toxicol., 2019, 93(4), 941-951. doi: 10.1007/s00204-019-02416-7 PMID: 30806763
  149. Small, A.; Lansdown, N.; Al-Baghdadi, M.; Quach, A.; Ferrante, A. Facilitating THP-1 macrophage studies by differentiating and investigating cell functions in polystyrene test tubes. J. Immunol. Methods, 2018, 461, 73-77. doi: 10.1016/j.jim.2018.06.019 PMID: 30158075
  150. Deng, Y.; Govers, C.; Beest, E.; van Dijk, A.J.; Hettinga, K.; Wichers, H.J. THP-1 cell line-based exploration of immune responses toward heat-treated BLG. Front. Nutr., 2021, 7, 612397. doi: 10.3389/fnut.2020.612397 PMID: 33521038
  151. Zhang, J.Z.; Ward, K.W. Besifloxacin, a novel fluoroquinolone antimicrobial agent, exhibits potent inhibition of pro-inflammatory cytokines in human THP-1 monocytes. J. Antimicrob. Chemother., 2007, 61(1), 111-116. doi: 10.1093/jac/dkm398 PMID: 17965029
  152. Habeeb, F.; Stables, G.; Bradbury, F.; Nong, S.; Cameron, P.; Plevin, R.; Ferro, V.A. The inner gel component of Aloe vera suppresses bacterial-induced pro-inflammatory cytokines from human immune cells. Methods, 2007, 42(4), 388-393. doi: 10.1016/j.ymeth.2007.03.005 PMID: 17560326
  153. Giambartolomei, G.H.; Dennis, V.A.; Lasater, B.L.; Murthy, P.K.; Philipp, M.T. Autocrine and exocrine regulation of interleukin-10 production in THP-1 cells stimulated with Borrelia burgdorferi lipoproteins. Infect. Immun., 2002, 70(4), 1881-1888. doi: 10.1128/IAI.70.4.1881-1888.2002 PMID: 11895951
  154. Hsu, W.H.; Lee, B.H.; Liao, T.H.; Hsu, Y.W.; Pan, T.M. Monascus-fermented metabolite monascin suppresses inflammation via PPAR-γ regulation and JNK inactivation in THP-1 monocytes. Food Chem. Toxicol., 2012, 50(5), 1178-1186. doi: 10.1016/j.fct.2012.02.029 PMID: 22381257
  155. Kim, Y.; So, H.S.; Kim, S.J.; Youn, M.J.; Lee, J.H.; Kim, N.S.; Lee, J.H.; Woo, W.H.; Lee, D.W.; Cho, K.H.; Moon, B.S.; Park, R. Antiinflammatory effect of Daesiho, a Korean traditional prescription for cerebral infarct patients. Phytother. Res., 2008, 22(6), 829-835. doi: 10.1002/ptr.2389 PMID: 18412147
  156. Eguchi, A.; Murakami, A.; Ohigashi, H. Nobiletin, a citrus flavonoid, suppresses phorbol ester‐induced expression of multiple scavenger receptor genes in THP‐1 human monocytic cells. FEBS Lett., 2006, 580(13), 3321-3328. doi: 10.1016/j.febslet.2006.04.077 PMID: 16698017
  157. He, X.; Shu, J.; Xu, L.; Lu, C.; Lu, A. Inhibitory effect of Astragalus polysaccharides on lipopolysaccharide-induced TNF-a and IL-1β production in THP-1 cells. Molecules, 2012, 17(3), 3155-3164. doi: 10.3390/molecules17033155 PMID: 22410422
  158. Iio, A.; Ohguchi, K.; Maruyama, H.; Tazawa, S.; Araki, Y.; Ichihara, K.; Nozawa, Y.; Ito, M. Ethanolic extracts of Brazilian red propolis increase ABCA1 expression and promote cholesterol efflux from THP-1 macrophages. Phytomedicine, 2012, 19(5), 383-388. doi: 10.1016/j.phymed.2011.10.007 PMID: 22305277
  159. Yang, C.W.; Chang, C.L.; Lee, H.C.; Chi, C.W.; Pan, J.P.; Yang, W.C. Curcumin induces the apoptosis of human monocytic leukemia THP-1 cells via the activation of JNK/ERK Pathways. BMC Complement. Altern. Med., 2012, 12(1), 22. doi: 10.1186/1472-6882-12-22 PMID: 22443687
  160. Xu, L.; Shen, S.; Ma, Y.; Kim, J.K.; Rodriguez-Agudo, D.; Heuman, D.M.; Hylemon, P.B.; Pandak, W.M.; Ren, S. 25-Hydroxycholesterol-3-sulfate attenuates inflammatory response via PPARγ signaling in human THP-1 macrophages. Am. J. Physiol. Endocrinol. Metab., 2012, 302(7), E788-E799. doi: 10.1152/ajpendo.00337.2011 PMID: 22275753
  161. Smiderle, F.R.; Ruthes, A.C.; van Arkel, J.; Chanput, W.; Iacomini, M.; Wichers, H.J.; Van Griensven, L.J.L.D. Polysaccharides from Agaricus bisporus and Agaricus brasiliensis show similarities in their structures and their immunomodulatory effects on human monocytic THP-1 cells. BMC Complement. Altern. Med., 2011, 11(1), 58. doi: 10.1186/1472-6882-11-58 PMID: 21787425
  162. Li, M.; Liu, Z.H.; Chen, Q.; Zhou, W.Q.; Yu, M.W.; Lü, G.X.; Lü, X.L.; Shen, Y.N.; Liu, W.D.; Wu, S.X. Insoluble β-glucan from the cell wall of Candida albicans induces immune responses of human THP-1 monocytes through Dectin-1. Chin. Med. J. , 2009, 122(5), 496-501. PMID: 19323897
  163. Binesh, A.; Devaraj, S.N.; Halagowder, D. Molecular interaction of NFκB and NICD in monocyte–macrophage differentiation is a target for intervention in atherosclerosis. J. Cell. Physiol., 2019, 234(5), 7040-7050. doi: 10.1002/jcp.27458 PMID: 30478968
  164. Song, M.; Phelps, D.S. Interaction of surfactant protein A with lipopolysaccharide and regulation of inflammatory cytokines in the THP-1 monocytic cell line. Infect. Immun., 2000, 68(12), 6611-6617. doi: 10.1128/IAI.68.12.6611-6617.2000 PMID: 11083772
  165. Harrison, L.M.; van Haaften, W.C.E.; Tesh, V.L. Regulation of proinflammatory cytokine expression by Shiga toxin 1 and/or lipopolysaccharides in the human monocytic cell line THP-1. Infect. Immun., 2004, 72(5), 2618-2627. doi: 10.1128/IAI.72.5.2618-2627.2004 PMID: 15102770
  166. Harrison, L.M.; Van Den Hoogen, C.; Van Haaften, W.C.; Tesh, V.L. Chemokine expression in the monocytic cell line THP-1 in response to purified shiga toxin 1 and/or lipopolysaccharides. Infect. Immun., 2005, 73(1), 403-412.
  167. Needham, B.D.; Carroll, S.M.; Georgiou, P.G. Modulating the innate immune response by combinatorial engineering of endotoxin. Proc. Natl. Acad. Sci. , 2013, 110(4), 1464-1469. PMID: 23297218
  168. Grodzki, A.C.G.; Giulivi, C.; Lein, P.J. Oxygen tension modulates differentiation and primary macrophage functions in the human monocytic THP-1 cell line. PLoS One, 2013, 8(1), e54926. doi: 10.1371/journal.pone.0054926 PMID: 23355903
  169. Gostner, J.M.; Schröcksnadel, S.; Becker, K.; Jenny, M.; Schennach, H.; Überall, F.; Fuchs, D. Antimalarial drug chloroquine counteracts activation of indoleamine (2,3)‐dioxygenase activity in human PBMC. FEBS Open Bio, 2012, 2(1), 241-245. doi: 10.1016/j.fob.2012.08.004 PMID: 23650606
  170. Nie, J.; He, Y. Integration of three-dimensional printing and microfluidics. In: Multidisciplinary Microfluidic and Nanofluidic Lab-on-a-chip; Elsevier, 2022; pp. 385-406. doi: 10.1016/B978-0-444-59432-7.00003-0
  171. Liang, W.; Li, Y.; Cuellar-Camacho, J.L.; Yu, L.; Zhou, S.; Li, W.; Haag, R. Chemically defined stem cell microniche engineering by microfluidics compatible with iPSCs’ growth in 3D culture. Biomaterials, 2022, 280, 121253. doi: 10.1016/j.biomaterials.2021.121253 PMID: 34801253
  172. Ortiz-Cárdenas, J.E.; Zatorski, J.M.; Arneja, A.; Montalbine, A.N.; Munson, J.M.; Luckey, C.J.; Pompano, R.R. Towards spatially-organized organs-on-chip: Photopatterning cell-laden thiol-ene and methacryloyl hydrogels in a microfluidic device. Organs-on-a-Chip, 2022, 4, 100018. doi: 10.1016/j.ooc.2022.100018 PMID: 35535262
  173. Terrell, J.A.; Jones, C.G.; Kabandana, G.K.M.; Chen, C. From cells-on-a-chip to organs-on-a-chip: scaffolding materials for 3D cell culture in microfluidics. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(31), 6667-6685. doi: 10.1039/D0TB00718H PMID: 32567628
  174. Birol, S.Z.; Fucucuoglu, R.; Cadirci, S.; Sayi-Yazgan, A.; Trabzon, L. Studying dynamic stress effects on the behaviour of THP-1 cells by microfluidic channels. Sci. Rep., 2021, 11(1), 14379. doi: 10.1038/s41598-021-93935-w PMID: 34257375
  175. Lvova, T.Y.; Stepanova, O.I.; Viazmina, L.P.; Okorokova, L.S.; Belyakova, K.L.; Belikova, M.E.; Selkov, S.A.; Sokolov, D.I. Effect of factors secreted by the placenta on phenotype of THP-1 cells cultured on a 3D scaffold. Bull. Exp. Biol. Med., 2016, 161(1), 162-167. doi: 10.1007/s10517-016-3368-4 PMID: 27259498
  176. Richmond, T.; Tompkins, N. 3D microfluidics in PDMS: manufacturing with 3D molding. Microfluid. Nanofluidics, 2021, 25(9), 76. doi: 10.1007/s10404-021-02478-z
  177. Binesh, A.; Devaraj, S.N.; Devaraj, H. Inhibition of nuclear translocation of notch intracellular domain (NICD) by diosgenin prevented atherosclerotic disease progression. Biochimie, 2018, 148, 63-71. doi: 10.1016/j.biochi.2018.02.011 PMID: 29481959
  178. Mizuno, K.; Toyoda, Y.; Fukami, T.; Nakajima, M.; Yokoi, T. Stimulation of pro-inflammatory responses by mebendazole in human monocytic THP-1 cells through an ERK signaling pathway. Arch. Toxicol., 2011, 85(3), 199-207. doi: 10.1007/s00204-010-0584-y PMID: 20848085
  179. Mizuno, K.; Fukami, T.; Toyoda, Y.; Nakajima, M.; Yokoi, T. Terbinafine stimulates the pro-inflammatory responses in human monocytic THP-1 cells through an ERK signaling pathway. Life Sci., 2010, 87(17-18), 537-544. doi: 10.1016/j.lfs.2010.08.010 PMID: 20816994
  180. Edling, Y.; Sivertsson, L.; Andersson, T.B.; Porsmyr-Palmertz, M.; Ingelman-Sundberg, M. Pro-inflammatory response and adverse drug reactions: Mechanisms of action of ximelagatran on chemokine and cytokine activation in a monocyte in vitro model. Toxicol. In Vitro, 2008, 22(6), 1588-1594. doi: 10.1016/j.tiv.2008.06.011 PMID: 18640260
  181. Edling, Y.; Sivertsson, L.K.; Butura, A.; Ingelman-Sundberg, M.; Ek, M. Increased sensitivity for troglitazone-induced cytotoxicity using a human in vitro co-culture model. Toxicol. In Vitro, 2009, 23(7), 1387-1395. doi: 10.1016/j.tiv.2009.07.026 PMID: 19631733
  182. Plattner, V.E.; Ratzinger, G.; Engleder, E.T.; Gallauner, S.; Gabor, F.; Wirth, M. Alteration of the glycosylation pattern of monocytic THP-1 cells upon differentiation and its impact on lectin-mediated drug delivery. Eur. J. Pharm. Biopharm., 2009, 73(3), 324-330. doi: 10.1016/j.ejpb.2009.07.004 PMID: 19602437
  183. Li, R.; Mouillesseaux, K.P.; Montoya, D.; Cruz, D.; Gharavi, N.; Dun, M.; Koroniak, L.; Berliner, J.A. Identification of prostaglandin E2 receptor subtype 2 as a receptor activated by OxPAPC. Circ. Res., 2006, 98(5), 642-650. doi: 10.1161/01.RES.0000207394.39249.fc PMID: 16456101
  184. Kiyotani, K.; Toyoshima, Y.; Nakamura, Y. Personalized immunotherapy in cancer precision medicine. Cancer Biol. Med., 2021, 18(4), 955-965. PMID: 34369137
  185. Matsa, E.; Ahrens, J.H.; Wu, J.C. Human induced pluripotent stem cells as a platform for personalized and precision cardiovascular medicine. Physiol. Rev., 2016, 96(3), 1093-1126. doi: 10.1152/physrev.00036.2015 PMID: 27335446
  186. Zhao, Y.; Hao, C.; Zhai, R.; Bao, L.; Wang, D.; Li, Y.; Yu, X.; Huang, R.; Yao, W. Effects of cyclophosphamide on the phenotypes and functions of THP-1 cells. Environ. Toxicol. Pharmacol., 2019, 70, 103201. doi: 10.1016/j.etap.2019.103201 PMID: 31202006
  187. Keuper, M.; Blüher, M.; Schön, M.R.; Möller, P.; Dzyakanchuk, A.; Amrein, K.; Debatin, K.M.; Wabitsch, M.; Fischer-Posovszky, P. An inflammatory micro-environment promotes human adipocyte apoptosis. Mol. Cell. Endocrinol., 2011, 339(1-2), 105-113. doi: 10.1016/j.mce.2011.04.004 PMID: 21501656
  188. Azenabor, A.A.; Cintrón-Cuevas, J.; Schmitt, H.; Bumah, V. Chlamydia trachomatis induces anti-inflammatory effect in human macrophages by attenuation of immune mediators in Jurkat T-cells. Immunobiology, 2011, 216(12), 1248-1255. doi: 10.1016/j.imbio.2011.07.002 PMID: 21802168
  189. Risitano, A.; Beaulieu, L.M.; Vitseva, O.; Freedman, J.E. Platelets and platelet-like particles mediate intercellular RNA transfer. Blood, 2012, 119(26), 6288-6295. doi: 10.1182/blood-2011-12-396440 PMID: 22596260
  190. Thiyagarajan, M.; Waldbeser, L.; Whitmill, A. THP-1 leukemia cancer treatment using a portable plasma device. Stud. Health Technol. Inform., 2012, 173, 515-517. PMID: 22357047
  191. Thuer, E.; Gabaldón, T. Comparative transcriptomics of THP-1 monocytes in response to different pathogens. bioRxiv, 2017, 155853. doi: 10.1101/155853
  192. ZHOU, HF.; LU, YXP.; SUN, ZH.; GUO, Y. Establishment and characterization of thp-1 cell model stably expressing hiv-1 auxiliary protein rev. Zool. Res., 2008, 29(4), 421-426.
  193. Zubova, S.V.; Radzyukevich, Y.V.; Grachev, S.V.; Prokhorenko, I.R. Effect of various agents on the direction of THP-1 cell differentiation. Serb. J. Exp. Clin. Res., 2018, 19(3), 263-269. doi: 10.2478/sjecr-2018-0029
  194. Pinto, S.M.; Kim, H.; Subbannayya, Y.; Giambelluca, M.; Bösl, K.; Kandasamy, R.K. Dose-dependent phorbol 12-myristate-13-acetate-mediated monocyte-to-macrophage differentiation induces unique proteomic signatures in THP-1 cells. bioRxiv, 2020. doi: 10.1101/2020.02.27.968016
  195. Binesh, A.; Devaraj, S.N.; Devaraj, H. Expression of chemokines in macrophage polarization and downregulation of NFκB in aorta allow macrophage polarization by diosgenin in atherosclerosis. J. Biochem. Mol. Toxicol., 2020, 34(2), e22422. doi: 10.1002/jbt.22422 PMID: 31729780
  196. Liu, W.; Chen, X.; Wu, M.; Li, L.; Liu, J.; Shi, J.; Hong, T. Recombinant Klotho protein enhances cholesterol efflux of THP-1 macrophage-derived foam cells via suppressing Wnt/β-catenin signaling pathway. BMC Cardiovasc. Disord., 2020, 20(1), 120. doi: 10.1186/s12872-020-01400-9 PMID: 32138681

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers