Exploration of Antileishmanial Compounds Derived from Natural Sources


Цитировать

Полный текст

Аннотация

Aims::Leishmaniasis is a deadly tropical disease that is neglected in many countries. World Health Organization, along with a few other countries, has been working together to protect against these parasites. Many novel drugs from the past few years have been discovered and subjected against leishmaniasis, which have been effective but they are quite expensive for lower-class people. Some drugs showed no effect on the patients, and the longer use of these medicines has made resistance against these deadly parasites. Researchers have been working for better medication by using natural products from medicinal plants (oils, secondary metabo-lites, plant extracts) and other alternatives to find active compounds as an alternative to the current synthetic drugs.

Materials and Methods:To find more potential natural products to treat Leishmania spp, a study has been conducted and reported many plant metabolites and other natural alternatives from plants and their extracts. Selected research papers with few term words such as natural products, plant metabolites, Leishmaniasis, in vivo, in vitro, and treatment against leishmania-sis; in the Google Scholar, PubMed, and Science Direct databases with selected research papers published between 2015 and 2021 have been chosen for further analysis has been included in this report which has examined either in vivo or in vitro analysis.

Results:This paper reported more than 20 novel natural compounds in 20 research papers that have been identified which report a leishmanicidal activity and shows an action against pro-mastigote, axenic, and intracellular amastigote forms.

Conclusion:Medicinal plants, along with a few plant parts and extracts, have been reported as a possible novel anti-leishmanial medication. These medicinal plants are considered nontoxic to Host cells. Leishmaniasis treatments will draw on the isolated compounds as a source further and these compounds compete with those already offered in clinics.

Об авторах

Gajala Ghouse Peer

Centre for Drug Design Discovery and Development (C4D), SRM University

Email: info@benthamscience.net

Anjali Priyadarshini

Centre for Drug Design Discovery and Development (C4D), SRM University,

Email: info@benthamscience.net

Archana Gupta

Centre for Drug Design Discovery and Development (C4D), SRM University

Email: info@benthamscience.net

Arpana Vibhuti

Centre for Drug Design Discovery and Development (C4D), SRM University

Email: info@benthamscience.net

Vethakkani Raj

Centre for Drug Design Discovery and Development (C4D), SRM University

Email: info@benthamscience.net

Chung-Ming Chang

Master & Ph.D. program in Biotechnology Industry, Chang Gung University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Ramendra Pandey

Centre for Drug Design Discovery and Development (C4D), SRM University

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Ogden, G.B.; Melby, P.C. Leishmania. Encycl. Microbiol., 2009, (Jan), 663-673. doi: 10.1016/B978-012373944-5.00195-4
  2. Gossage, S.M.; Rogers, M.E.; Bates, P.A. Two separate growth phases during the development of Leishmania in sand flies: implications for understanding the life cycle. Int. J. Parasitol., 2003, 33(10), 1027-1034. doi: 10.1016/S0020-7519(03)00142-5 PMID: 13129524
  3. Leishmaniasis. Available from: https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/leishmaniasis (Accessed Jun. 17, 2022).
  4. Khan, M.; Bhaskar, K.; Kikuchi, M. Comparison of PCR-based diagnoses for visceral leishmaniasis in Bangladesh. Parasitol. Int., 2014, 63(2), 327-331.
  5. Hosseininejad, M.; Mohebali, M.; Hosseini, F.; Karimi, S. Seroprevalence of canine visceral leishmaniasis in asymptomatic dogs in Iran. Iran. J. Vet. Res., 2012, 13(1), 54-57.
  6. WHO. Control of the leishmaniases: Report of a meeting of the WHO Expert Commitee on the Control of Leishmaniases., 2010. Available from: https://apps.who.int/iris/handle/10665/44412?locale-attribute =ar&utm_source=transaction&utm_medium=email (Accessed: Jul. 01, 2022).
  7. Handman, E. Cell biology of Leishmania. Adv. Parasitol., 1999, 44, 1-39. doi: 10.1016/S0065-308X(08)60229-8 PMID: 10563394
  8. Oryan, A.; Mehrabani, D.; Owji, S.M.; Motazedian, M.H.; Hatam, G.H.; Asgari, Q. Morphologic changes due to cutaneous leishmaniosis in BALB/c mice experimentally infected with leishmania major. J. Appl. Anim. Res., 2011, 34(1), 87-92. doi: 10.1080/09712119.2008.9706946
  9. O’Dempsey, T. Topical treatment modalities for old world cutaneous leishmaniasis: A review. Prague Med. Rep., 2012, 113(2), 105-118.
  10. Oryan, A.; Shirian, S.; Tabandeh, M.R.; Hatam, G.R.; Kalantari, M.; Daneshbod, Y. Molecular, cytological, and immunocytochemical study and kDNA sequencing of laryngeal Leishmania infantum infection. Parasitol. Res., 2013, 112(4), 1799-1804. doi: 10.1007/s00436-012-3240-z PMID: 23263387
  11. Al-Hajj, M.M.; Al-Shamahy, H.A.; Moharram, B. In vitro anti-leishmanial activity against cutaneous leishmania parasites and preliminary phytochemical analysis of four yemeni medicinal plants. Artic. Univers. J. Pharm. Res., 2018, 3(4) doi: 10.22270/ujpr.v3i4.183
  12. Gutiérrez-Rebolledo, G.A.; Drier-Jonas, S.; Jiménez-Arellanes, M.A. Natural compounds and extracts from Mexican medicinal plants with anti-leishmaniasis activity: An update. Asian Pac. J. Trop. Med., 2017, 10(12), 1105-1110. doi: 10.1016/j.apjtm.2017.10.016 PMID: 29268964
  13. Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet, 2018, 392(10151), 951-970. doi: 10.1016/S0140-6736(18)31204-2 PMID: 30126638
  14. Kimutai, R.; Musa, A.M.; Njoroge, S.; Omollo, R.; Alves, F.; Hailu, A.; Khalil, E.A.G.; Diro, E.; Soipei, P.; Musa, B.; Salman, K.; Ritmeijer, K.; Chappuis, F.; Rashid, J.; Mohammed, R.; Jameneh, A.; Makonnen, E.; Olobo, J.; Okello, L.; Sagaki, P.; Strub, N.; Ellis, S.; Alvar, J.; Balasegaram, M.; Alirol, E.; Wasunna, M. Safety and effectiveness of sodium stibogluconate and paromomycin combination for the treatment of visceral leishmaniasis in eastern Africa: Results from a pharmacovigilance programme. Clin. Drug Investig., 2017, 37(3), 259-272. doi: 10.1007/s40261-016-0481-0 PMID: 28066878
  15. Sundar, S.; More, D.K.; Singh, M.K.; Singh, V.P.; Sharma, S.; Makharia, A.; Kumar, P.C.K.; Murray, H.W. Failure of pentavalent antimony in visceral leishmaniasis in India: Report from the center of the Indian epidemic. Clin. Infect. Dis., 2000, 31(4), 1104-1107. doi: 10.1086/318121 PMID: 11049798
  16. Dorlo, T.P.C.; Huitema, A.D.R.; Beijnen, J.H.; de Vries, P.J. Optimal dosing of miltefosine in children and adults with visceral leishmaniasis. Antimicrob. Agents Chemother., 2012, 56(7), 3864-3872. doi: 10.1128/AAC.00292-12 PMID: 22585212
  17. Mishra, B.B.; Tiwari, V.K. Natural products: An evolving role in future drug discovery. Eur. J. Med. Chem., 2011, 46(10), 4769-4807. doi: 10.1016/j.ejmech.2011.07.057 PMID: 21889825
  18. Cragg, G.M.; Newman, D. J. Biodiversity: A continuing source of novel drug leads. Pure Appl. Chem., 2005, 77(1), 7-24. doi: 10.1351/pac200577010007
  19. Schmidt, T.J.; Khalid, S.A.; Romanha, A.J.; Alves, T.M.; Biavatti, M.W.; Brun, R.; Da Costa, F.B.; de Castro, S.L.; Ferreira, V.F.; de Lacerda, M.V.; Lago, J.H.; Leon, L.L.; Lopes, N.P. das Neves Amorim, R.C.; Niehues, M.; Ogungbe, I.V.; Pohlit, A.M.; Scotti, M.T.; Setzer, W.N.; de N C Soeiro, M.; Steindel, M.; Tempone, A.G. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases - part II. Curr. Med. Chem., 2012, 19(14), 2176-2228. doi: 10.2174/092986712800229087 PMID: 22414104
  20. Sajjadi, S. Natural anti-leishmaniasis compounds in traditional iranian medicine. JIITM, 2012, 3(1), 41-50.
  21. da Silva, R.R.P.; da Silva, B.J.M.; Rodrigues, A.P.D.; Farias, L.H.S.; da Silva, M.N.; Alves, D.T.V.; Bastos, G.N.T.; do Nascimento, J.L.M.; Silva, E.O. In vitro biological action of aqueous extract from roots of Physalis angulata against Leishmania (Leishmania) amazonensis. BMC Complement. Altern. Med., 2015, 15(1), 249. doi: 10.1186/s12906-015-0717-1 PMID: 26205771
  22. Badirzadeh, A.; Heidari-Kharaji, M.; Fallah-Omrani, V.; Dabiri, H.; Araghi, A.; Salimi Chirani, A. Antileishmanial activity of Urtica dioica extract against zoonotic cutaneous leishmaniasis. PLoS Negl. Trop. Dis., 2020, 14(1), e0007843. doi: 10.1371/journal.pntd.0007843 PMID: 31929528
  23. Greve, H.L.; Kaiser, M.; Mäser, P.; Schmidt, T.J. Boswellic acids show in vitro activity against leishmania donovani. Molecules, 2021, 26(12), 3651. doi: 10.3390/molecules26123651 PMID: 34203815
  24. Boswellia serrata-frankincense (A Jesus Gifted Herb); An Updated Pharmacological Profile. Available from: https://scialert.net/abstract/?doi=pharmacologia.2013.457.463 (Accessed Jun. 21, 2022).
  25. Mahmoud, A.B.; Danton, O.; Kaiser, M.; Khalid, S.; Hamburger, M.; Mäser, P. HPLC-based activity profiling for antiprotozoal compounds in croton gratissimus and cuscuta hyalina. Front. Pharmacol., 2020, 11, 1246. doi: 10.3389/fphar.2020.01246 PMID: 32922290
  26. Ngadjui, B.T.; Abegaz, B.M.; Keumedjio, F.; Folefoc, G.N.; Kapche, G.W.F. Diterpenoids from the stem bark of Croton zambesicus. Phytochemistry, 2002, 60(4), 345-349. doi: 10.1016/S0031-9422(02)00034-1 PMID: 12031423
  27. Aderogba, M.A.; McGaw, L.J.; Bezabih, M.; Abegaz, B.M. Isolation and characterisation of novel antioxidant constituents of Croton zambesicus leaf extract. Nat. Prod. Res., 2011, 2513, 1224-1233. doi: 10.1080/14786419.2010.532499
  28. Antileishmania activity of Levandula officinalis essence against Leishmania major in In vitro media - Shahrekord University Of Medical Sciences. Available from: http://eprints.skums.ac.ir/3619/(accessed Jun. 23, 2022)
  29. Baloch, N.; Kakar, A.M.; Nabi, S.; Wajid, Z.; Kakar, M.A.; Al-Kahraman, Y.M.S.A. In vitro antimicrobial, insecticidal, antitumor activities and their phytochemical estimation of methanolic extract and its fractions of Medicago lupulina leaves. World Appl. Sci. J., 2013, 23(4), 500-506. doi: 10.5829/IDOSI.WASJ.2013.23.04.368
  30. Eskandari, E.G.; Doudi, M. International Journal of Farming and Allied Sciences The study of antileishmanial effect of Medicago lupulina leaves essential oil on Leishmania major (MRHO/IR/75/ER) by MTT assay 2016. Available from: www.ijfas.com(Accessed: Jun. 24, 2022)
  31. Preliminary Phytochemical Analysis and Antimicrobial Activity of Some Weeds collected from Marathwada Region ⋅ Nagesh A Dhole - Academia.edu. Available from: https://www.academia.edu/22336709/Preliminary_Phytochemical_Analysis_and_Antimicrobial_Activity_of_Some_Weeds_collected_from_Marathwada_Region (Accessed Jun. 24, 2022)
  32. Elham Gharirvand, E. An In vitro study of antileishmanial effect of Portulaca oleracea. Available from: https://www.jvbd.org/temp/JVectorBorneDis534362-6886259_190742.pdf
  33. Doudi, M.; Shirazi, S. Antileishmanial effect of Crataegus microphylla leaf extract on Leishmania major (MRHO/IR/75/ER) promastigotes. Int. J. Mol. Clin. Microbiol., 2017, 7(1), 761-768.
  34. Albakhit, S.; Khademvatan, S.; Doudi, M.; Foroutan-Rad, M. Antileishmanial activity of date (phoenix dactylifera l) fruit and pit extracts in vitro. J. Evid. Based Complementary Altern. Med., 2016, 21(4), NP98-NP102. doi: 10.1177/2156587216651031 PMID: 27242378
  35. Baliga, M.S.; Baliga, B.R.V.; Kandathil, S.M.; Bhat, H.P.; Vayalil, P.K. A review of the chemistry and pharmacology of the date fruits (Phoenix dactylifera L.). Food Res. Int., 2011, 44(7), 1812-1822. doi: 10.1016/j.foodres.2010.07.004
  36. Ljubuncic, P.; Portnaya, I.; Cogan, U.; Azaizeh, H.; Bomzon, A. Antioxidant activity of Crataegus aronia aqueous extract used in traditional Arab medicine in Israel. J. Ethnopharmacol., 2005, 101(1-3), 153-161. doi: 10.1016/j.jep.2005.04.024 PMID: 15970411
  37. Rigelsky, J.M.; Sweet, B.V. Hawthorn: Pharmacology and therapeutic uses. Am. J. Health Syst. Pharm., 2002, 59(5), 417-422. doi: 10.1093/ajhp/59.5.417 PMID: 11887407
  38. Dabirzadeh, M. Effect of methanolic extract of hawthorn (Crataegus aronia) fruit on Leishmania major in vitro. Feyz, 2016, 20(1), 11-15.
  39. Demarchi, I.G.; Thomazella, M.V.; de Souza Terron, M.; Lopes, L.; Gazim, Z.C.; Cortez, D.A.G.; Donatti, L.; Aristides, S.M.A.; Silveira, T.G.V.; Lonardoni, M.V.C. Antileishmanial activity of essential oil and 6,7-dehydroroyleanone isolated from Tetradenia riparia. Exp. Parasitol., 2015, 157, 128-137. doi: 10.1016/j.exppara.2015.06.014 PMID: 26116864
  40. Polya, G. Biochemical targets of plant bioactive compounds A pharmacological reference guide to sites of action and biological effects; CRC Press, 2003.
  41. Shale, T.L.; Stirk, W.A.; van Staden, J. Screening of medicinal plants used in Lesotho for anti-bacterial and anti-inflammatory activity. J. Ethnopharmacol., 1999, 67(3), 347-354. doi: 10.1016/S0378-8741(99)00035-5 PMID: 10617071
  42. Van Puyvelde, L.; De Kimpe, N.; Ayobangira, F.X.; Costa, J.; Nshimyumukiza, P.; Boily, Y.; Hakizamungu, E.; Schamp, N. Wheat rootlet growth inhibition test of Rwandese medicinal plants: Active principles of Tetradenia riparia and Diplolophium africanum. J. Ethnopharmacol., 1988, 24(2-3), 233-246. doi: 10.1016/0378-8741(88)90156-0 PMID: 3253494
  43. Gazim, Z.C. Seasonal variation, chemical composition, and analgesic and antimicrobial activities of the essential oil from leaves of tetradenia riparia (hochst.) codd in southern brazil. Molecules, 2010, 15(8), 5509-5524. doi: 10.3390/molecules15085509
  44. Kusumoto, N.; Ashitani, T.; Hayasaka, Y.; Murayama, T.; Ogiyama, K.; Takahashi, K. Antitermitic activities of abietane-type diterpenes from taxodium distichum cones. J. Chem. Ecol., 2009, 35(6), 635-642. doi: 10.1007/s10886-009-9646-0
  45. Gupta, G.; Peine, K.J.; Abdelhamid, D.; Snider, H.; Shelton, A.B.; Rao, L.; Kotha, S.R.; Huntsman, A.C.; Varikuti, S.; Oghumu, S.; Naman, C.B.; Pan, L.; Parinandi, N.L.; Papenfuss, T.L.; Kinghorn, A.D.; Bachelder, E.M.; Ainslie, K.M.; Fuchs, J.R.; Satoskar, A.R. A novel sterol isolated from a plant used by mayan traditional healers is effective in treatment of visceral leishmaniasis caused by leishmania donovani. ACS Infect. Dis., 2015, 1(10), 497-506. doi: 10.1021/acsinfecdis.5b00081 PMID: 27623316
  46. Chan-Bacab, M.J.; Balanza, E.; Deharo, E.; Muñoz, V.; García, R.D.; Peña-Rodríguez, L.M. Variation of leishmanicidal activity in four populations of Urechites andrieuxii. J. Ethnopharmacol., 2003, 86(2-3), 243-247. doi: 10.1016/S0378-8741(03)00011-4 PMID: 12738094
  47. Lezama-Dávila, C.M.; Pan, L.; Isaac-Márquez, A.P.; Terrazas, C.; Oghumu, S.; Isaac-Márquez, R.; Pech-Dzib, M.Y.; Barbi, J.; Calomeni, E.; Parinandi, N.; Kinghorn, A.D.; Satoskar, A.R. Pentalinon andrieuxii root extract is effective in the topical treatment of cutaneous leishmaniasis caused by Leishmania mexicana. Phytother. Res., 2014, 28(6), 909-916. doi: 10.1002/ptr.5079 PMID: 24347110
  48. Biological activities of the plant‐derived bisindole voacamine with reference to malaria - Ramanitrahasimbola. Phytotherapy Research; Wiley 2001.
  49. Chowdhury, S.R.; Kumar, A.; Godinho, J.L.P.; De Macedo Silva, S.T.; Zuma, A.A.; Saha, S.; Kumari, N.; Rodrigues, J.C.F.; Sundar, S.; Dujardin, J.C.; Roy, S.; De Souza, W.; Mukhopadhyay, S.; Majumder, H.K. Voacamine alters Leishmania ultrastructure and kills parasite by poisoning unusual bi-subunit topoisomerase IB. Biochem. Pharmacol., 2017, 138, 19-30. doi: 10.1016/j.bcp.2017.05.002 PMID: 28483460
  50. Al Nasr, I. In vitro anti-leishmanial assessment of some medicinal plants collected from al qassim, Saudi Arabia. Acta Parasitol., 2020, 65(3), 696-703, 1234. doi: 10.2478/s11686-020-00205-2 PMID: 32347535
  51. Shah, S.M. Benzoic Acid Derivatives of Ifloga spicata (Forssk.) Sch.Bip. as Potential Anti-Leishmanial against Leishmania tropica. Process, 2019, 7(4), 208. doi: 10.3390/pr7040208
  52. Hammiche, V.; Maiza, K. Traditional medicine in Central Sahara: Pharmacopoeia of Tassili N’ajjer. J. Ethnopharmacol., 2006, 105(3), 358-367. doi: 10.1016/j.jep.2005.11.028 PMID: 16414225
  53. Abouri, M.; El Mousadik, A.; Msanda, F. An ethnobotanical survey of medicinal plants used in the Tata Province, Morocco. 2012. Available from: https://www.academia.edu/download/65902670/An_ethnobotanical_survey_of_medicinal_pl20210305-15320-1rd0ng9.pdf
  54. Ayrom, F.; Rasouli, S.; Shemshadi, B. In vitro antileishmanial activity of achillea santolina essential oil against leishmania infantum Promastigote by Methylthiazole Tetrazolium (MTT) and trypan blue colorimetric methods. Arch. Razi Inst., 2021, 76(3), 529-536. doi: 10.22092/ARI.2020.352245.1555 PMID: 34824746
  55. Nayebpour, M.; Golalipour, M.J.; Khori, V.; Azarhoush, R.; Azadbakht, M. Effect of Achillea santolina on mice spermatogenesis. DARU J. Pharmaceut. Sci, 2004, 12(1)
  56. Nemeth, E.; Bernath, J. Biological activities of yarrow species (Achillea spp.). Curr. Pharm. Des., 2008, 14(29), 3151-3167. doi: 10.2174/138161208786404281 PMID: 19075697
  57. Rottini, M.M. Endlicheria bracteolata (meisn.) essential oil as a weapon against leishmania amazonensis: In vitro assay. Molecules, 2019, 24(14), 2525. doi: 10.3390/molecules24142525
  58. Pramanik, P.K.; Paik, D.; Pramanik, A.; Chakraborti, T. White jute (Corchorus capsularis L.) leaf extract has potent leishmanicidal activity against Leishmania donovani. Parasitol. Int., 2019, 71, 41-45. doi: 10.1016/j.parint.2019.03.012 PMID: 30890371
  59. Islam, M.S.; Alfasane, M.A.; Khondker, M. Planktonic primary productivity of a eutrophic water body of Dhaka Metropolis, Bangladesh. Bangladesh J. Bot., 2013, 41(2), 135-142. doi: 10.3329/bjb.v41i2.13437
  60. Zakaria, Z.A.; Sulaiman, M.R.; Gopalan, H.K.; Abdul Ghani, Z.D.; Raden Mohd Nor, R.N.; Mat Jais, A.M.; Abdullah, F.C. Antinociceptive and anti-inflammatory properties of Corchorus capsularis leaves chloroform extract in experimental animal models. Yakugaku Zasshi, 2007, 127(2), 359-365. doi: 10.1248/yakushi.127.359 PMID: 17268156
  61. Kharat, M.; Kharat, K.; Sundar, S.; Pai, K. Metabolomic approach to study the Aerva sanguinolenta plant extract mechanism of action in Leishmania parasite. Int. J. Infect. Dis., 2018, 73, 144. doi: 10.1016/j.ijid.2018.04.3740
  62. Sarker, J.; Ali, M.R.; Khan, M.A.; Rahman, M.M.; Hossain, A.S.M.S.; Alam, A.H.M.K. The plant aerva sanguinolenta: A review on traditional uses, phytoconstituents and pharmacological activities. Pharmacogn. Rev., 2021, 13(26), 89-92. doi: 10.5530/phrev.2019.2.9
  63. Sahid, E.D.N.; Claudino, J.C.; Oda, F.B.; Carvalho, F.A.; Santos, A.G.; Graminha, M.A.S.; Clementino, L.C. Baccharis trimera (Less.) DC leaf derivatives and eupatorin activities against Leishmania amazonensis. Nat. Prod. Res., 2022, 36(6), 1599-1603. doi: 10.1080/14786419.2021.1887175 PMID: 33586545
  64. Menezes, A.P.S.; da Silva, J.; Fisher, C.; da Silva, F.R.; Reyes, J.M.; Picada, J.N.; Ferraz, A.G.; Corrêa, D.S.; Premoli, S.M.; Dias, J.F.; de Souza, C.T.; Ferraz, A.B.F. Chemical and toxicological effects of medicinal Baccharis trimera extract from coal burning area. Chemosphere, 2016, 146, 396-404. doi: 10.1016/j.chemosphere.2015.12.028 PMID: 26741544
  65. Pádua, B.C.; Silva, L.D.; Rossoni, J.V.; Humberto, J.L.; Chaves, M.M.; Silva, M.E.; Pedrosa, M.L.; Costa, D.C. Antioxidant properties of Baccharis trimera in the neutrophils of Fisher rats. J. Ethnopharmacol., 2010, 129(3), 381-386. doi: 10.1016/j.jep.2010.04.018 PMID: 20430095
  66. Pereira, W.K.V.; Lonardoni, M.V.C.; Grespan, R.; Caparroz-Assef, S.M.; Cuman, R.K.N.; Bersani-Amado, C.A. Immunomodulatory effect of Canova medication on experimental Leishmania amazonensis infection. J. Infect., 2005, 51(2), 157-164. doi: 10.1016/j.jinf.2004.09.009 PMID: 16038768
  67. Fonseca-Silva, F.; Inacio, J.D.F.; Canto-Cavalheiro, M.M.; Almeida-Amaral, E.E. Reactive oxygen species production by quercetin causes the death of Leishmania amazonensis intracellular amastigotes. J. Nat. Prod., 2013, 76(8), 1505-1508. doi: 10.1021/np400193m PMID: 23876028
  68. Da Silva, B.J.M.; Da Silva, R.R.P.; Rodrigues, A.P.D.; Farias, L.H.S.; Do Nascimento, J.L.M.; Silva, E.O. Physalis angulata induces death of promastigotes and amastigotes of Leishmania (Leishmania) amazonensis via the generation of reactive oxygen species. Micron, 2016, 82, 25-32. doi: 10.1016/j.micron.2015.12.001 PMID: 26765293
  69. Fürst, R.; Zündorf, I. Plant-derived anti-inflammatory compounds: Hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators Inflamm., 2014, 2014, 1-9. doi: 10.1155/2014/146832 PMID: 24987194
  70. Das, A.; Ali, N. Vaccine development against Leishmania donovani. Front. Immunol., 2012, 3(MAY), 99. doi: 10.3389/FIMMU.2012.00099/BIBTEX PMID: 22615707
  71. Abdellahi, L.; Iraji, F.; Mahmoudabadi, A.; Hejazi, S.H. Vaccination in leishmaniasis: A review article. Iran. Biomed. J., 2022, 26(1), 1-35. doi: 10.52547/IBJ.26.1.35 PMID: 34952558
  72. Reguera, R.M.; Elmahallawy, E.K.; García-Estrada, C.; Carbajo-Andrés, R.; Balaña-Fouce, R. DNA topoisomerases of leishmania parasites; druggable targets for drug discovery. Curr. Med. Chem., 2019, 26(32), 5900-5923. doi: 10.2174/0929867325666180518074959 PMID: 29773051
  73. Peretz, A.; Zabari, L.; Pastukh, N.; Avital, N.; Masaphy, S. In vitro antileishmanial activity of a black morel, morchella importuna (Ascomycetes). Int. J. Med. Mushrooms, 2018, 20(1), 71-80. doi: 10.1615/IntJMedMushrooms.2018025313 PMID: 29604914
  74. Souza, G.S.; de Carvalho, L.P.; de Melo, E.J.T.; Gomes, V.M.; Carvalho, A.O. The toxic effect of Vu -Defr, a defensin from Vigna unguiculata seeds, on Leishmania amazonensis is associated with reactive oxygen species production, mitochondrial dysfunction, and plasma membrane perturbation. Can. J. Microbiol., 2018, 64(7), 455-464. doi: 10.1139/cjm-2018-0095 PMID: 29586486
  75. Reithinger, R.; Dujardin, J.C.; Louzir, H.; Pirmez, C.; Alexander, B.; Brooker, S. Cutaneous leishmaniasis. Lancet Infect. Dis., 2007, 7(9), 581-596. doi: 10.1016/S1473-3099(07)70209-8 PMID: 17714672
  76. Oryan, A. Plant-derived compounds in treatment of leishmaniasis. J. Vet. Res., 2015, 16(1), 1.
  77. CDC - Leishmaniasis - Biology. 2020. Available from: https://www.cdc.gov/parasites/leishmaniasis/index.html#:~:text=Leishmaniasis%20is%20a%20parasitic%20disease,bite%20of%20phlebotomine%20sand%20flies

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024