Dominant Circulating Cell-free Mycobacterial Proteins in In-use Machining Fluid and their Antigenicity Potential


Cite item

Full Text

Abstract

Background:Occupational exposure to industrial Metalworking Fluid (MWF) colonized by Mycobacterium immunogenum (MI) has been associated with immune lung disease hypersensitivity pneumonitis (HP) in machinists. This warrants regular fluid monitoring for early detection of mycobacterial proteins, especially those with antigenic potential.

Objective:To detect and identify dominant MI proteins and antigens directly from the field-drawn in-use MWF using an integrated immunoproteomic and immunoinformatic approach.

Methods:An MI-positive MWF selected by DNA-based screening of several field-drawn MWF samples were cultured to isolate the colonizing strain and profiled for dominant circulating cell- free (ccf) MI proteins, including antigens using an integrated immunoproteomic (1D- and 2Dgel fractionation of seroreactivity proteins combined with shotgun proteomic analysis using LC-MS/ MS) and immunoinformatic strategy.

Results:A new MI strain (MJY-27) was identified. The gel fractionated MI protein bands (1Dgel) or spots (2D-gel) seroreactive with anti-MI sera probes (Rabbit and Patient sera) yielded 86 MI proteins, 29 of which showed peptide abundance. T-cell epitope analysis revealed high (90-100%) binding frequency for HLA-I& II alleles for 13 of the 29 proteins. Their antigenicity analysis revealed the presence of 6 to 37 antigenic determinants. Interestingly, one of the identified candidates corresponded to an experimentally validated strong B- and T-cell antigen (AgD) from our laboratory culture-based studies.

Conclusion:This first report on dominant proteins, including putative antigens of M. immunogenum prevalent in field in-use MWF, is a significant step towards the overall goal of developing fluid monitoring for exposure and disease risk assessment for HP development in machining environments.

Conclusion::This first report on dominant proteins, including putative antigens of M. immunogenum prevalent in field in-use MWF, is a significant step towards the overall goal of developing fluid monitoring for exposure and disease risk assessment for HP development in machining environments.

About the authors

Harish Chandra

Pulmonary/Microbial Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine

Email: info@benthamscience.net

Bethany Ahlers

Vermont Biomedical Research Network Proteomics Facility, University of Vermont

Email: info@benthamscience.net

Ying Wai Lam

Vermont Biomedical Research Network Proteomics Facility, University of Vermont

Email: info@benthamscience.net

Jagjit Yadav

Pulmonary/Microbial Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine

Author for correspondence.
Email: info@benthamscience.net

References

  1. Rosenman, K.D. Asthma, hypersensitivity pneumonitis and other respiratory diseases caused by metalworking fluids. Curr. Opin. Allergy Clin. Immunol., 2009, 9(2), 97-102. doi: 10.1097/ACI.0b013e3283229f96 PMID: 19307882
  2. Rosenman, K. Occupational diseases in individuals exposed to metal working fluids. Curr. Opin. Allergy Clin. Immunol., 2015, 15(2), 131-136. doi: 10.1097/ACI.0000000000000140 PMID: 25564768
  3. Respiratory illness in workers exposed to metalworking fluid contaminated with nontuberculous mycobacteria--Ohio, 2001. MMWR Morb. Mortal. Wkly. Rep., 2002, 51(16), 349-352. PMID: 12004986
  4. O’Brien, D.M. Aerosol mapping of a facility with multiple cases of hypersensitivity pneumonitis: Demonstration of mist reduction and a possible dose/response relationship. Appl. Occup. Environ. Hyg., 2003, 18(11), 947-952. doi: 10.1080/10473220390237656 PMID: 14555448
  5. Raghu, G.; Remy-Jardin, M.; Ryerson, C.J.; Myers, J.L.; Kreuter, M.; Vasakova, M.; Bargagli, E.; Chung, J.H.; Collins, B.F.; Bendstrup, E.; Chami, H.A.; Chua, A.T.; Corte, T.J.; Dalphin, J.C.; Danoff, S.K.; Diaz-Mendoza, J.; Duggal, A.; Egashira, R.; Ewing, T.; Gulati, M.; Inoue, Y.; Jenkins, A.R.; Johannson, K.A.; Johkoh, T.; Tamae-Kakazu, M.; Kitaichi, M.; Knight, S.L.; Koschel, D.; Lederer, D.J.; Mageto, Y.; Maier, L.A.; Matiz, C.; Morell, F.; Nicholson, A.G.; Patolia, S.; Pereira, C.A.; Renzoni, E.A.; Salisbury, M.L.; Selman, M.; Walsh, S.L.F.; Wuyts, W.A.; Wilson, K.C. Diagnosis of hypersensitivity pneumonitis in adults: An official ATS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med., 2020, 202(3), e36-e69. doi: 10.1164/rccm.202005-2032ST PMID: 32706311
  6. Alberti, M.L.; Rincon-Alvarez, E.; Buendia-Roldan, I.; Selman, M. Hypersensitivity pneumonitis: Diagnostic and therapeutic challenges. Front. Med., 2021, 8, 718299. doi: 10.3389/fmed.2021.718299 PMID: 34631740
  7. Hamblin, M.; Prosch, H.; Vašáková, M. Diagnosis, course and management of hypersensitivity pneumonitis. Eur. Respir. Rev., 2022, 31(163), 210169. doi: 10.1183/16000617.0169-2021 PMID: 35140104
  8. Burge, P.S. Hypersensitivity pneumonitis due to metalworking fluid aerosols. Curr. Allergy Asthma Rep., 2016, 16(8), 59. doi: 10.1007/s11882-016-0639-0 PMID: 27473679
  9. Nett, R.J.; Stanton, M.; Grimes, G.R. Occupational respiratory and skin diseases among workers exposed to metalworking fluids. Curr. Opin. Allergy Clin. Immunol., 2021, 21(2), 121-127. doi: 10.1097/ACI.0000000000000717 PMID: 33394701
  10. Cohen, H.; White, E.M. Metalworking fluid mist occupational exposure limits: A discussion of alternative methods. J. Occup. Environ. Hyg., 2006, 3(9), 501-507. doi: 10.1080/15459620600867872 PMID: 16857649
  11. Shelton, B.G.; Flanders, W.D.; Morris, G.K. Mycobacterium sp. as a possible cause of hypersensitivity pneumonitis in machine workers. Emerg. Infect. Dis., 1999, 5(2), 270-273. doi: 10.3201/eid0502.990213 PMID: 10221881
  12. Tillie-Leblond, I.; Grenouillet, F.; Reboux, G.; Roussel, S.; Chouraki, B.; Lorthois, C.; Dalphin, J.C.; Wallaert, B.; Millon, L. Hypersensitivity pneumonitis and metalworking fluids contaminated by mycobacteria. Eur. Respir. J., 2011, 37(3), 640-647. doi: 10.1183/09031936.00195009 PMID: 20693254
  13. Trout, D.; Weissman, D.N.; Lewis, D.; Brundage, R.A.; Franzblau, A.; Remick, D. Evaluation of hypersensitivity pneumonitis among workers exposed to metal removal fluids. Appl. Occup. Environ. Hyg., 2003, 18(11), 953-960. doi: 10.1080/10473220390237683 PMID: 14555449
  14. Wilson, R.W.; Steingrube, V.A.; Böttger, E.C.; Springer, B.; Brown-Elliott, B.A.; Vincent, V.; Jost, K.C.; Zhang, Y.; Garcia, M.J.; Chiu, S.H.; Onyi, G.O.; Rossmoore, H.; Nash, D.R.; Wallace, R.J. Mycobacterium immunogenum sp. nov., a novel species related to Mycobacterium abscessus and associated with clinical disease, pseudo-outbreaks and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy. Int. J. Syst. Evol. Microbiol., 2001, 51(5), 1751-1764. doi: 10.1099/00207713-51-5-1751 PMID: 11594606
  15. Watt, W.D. Observations on the relationship between triazines and mycobacteria in metal removal fluids. Appl. Occup. Environ. Hyg., 2003, 18(11), 961-965. doi: 10.1080/10473220390237692 PMID: 14555450
  16. Johansson, E.; Yadav, J.S. Differential immunogenicity and lung disease-inducing potential of mycobacterium immunogenum genotypes and impact of co-exposure with pseudomonas: Optimizing a mouse model of chronic hypersensitivity pneumonitis. Int. J. Mol. Sci., 2024, 25(4), 2058. doi: 10.3390/ijms25042058
  17. Johansson, E.; Boivin, G.P.; Yadav, J.S. Early immunopathological events in acute model of mycobacterial hypersensitivity pneumonitis in mice. J. Immunotoxicol., 2017, 14(1), 77-88. doi: 10.1080/1547691X.2016.1273284 PMID: 28094581
  18. Gordon, T.; Nadziejko, C.; Galdanes, K.; Lewis, D.; Donnelly, K. Mycobacterium immunogenum causes hypersensitivity pneumonitis-like pathology in mice. Inhal. Toxicol., 2006, 18(6), 449-456. doi: 10.1080/08958370600563904 PMID: 16556584
  19. Chandra, H.; Yadav, E.; Yadav, J.S. Alveolar macrophage innate response to Mycobacterium immunogenum, the etiological agent of hypersensitivity pneumonitis: Role of JNK and p38 MAPK pathways. PLoS One, 2013, 8(12), e83172. doi: 10.1371/journal.pone.0083172 PMID: 24349452
  20. Chandra, H.; Yadav, J.S. T-cell antigens of Mycobacterium immunogenum, an etiological agent of occupational hypersensitivity pneumonitis. Mol. Immunol., 2016, 75, 168-177. doi: 10.1016/j.molimm.2016.05.020 PMID: 27294559
  21. Yadav, J.S.; Khan, I.U.H.; Fakhari, F.; Soellner, M.B. DNA-based methodologies for rapid detection, quantification, and species- or strain-level identification of respiratory pathogens (Mycobacteria and Pseudomonads) in metalworking fluids. Appl. Occup. Environ. Hyg., 2003, 18(11), 966-975. doi: 10.1080/10473220390237700 PMID: 14555451
  22. Khan, I.U.H.; Selvaraju, S.B.; Yadav, J.S. Occurrence and characterization of multiple novel genotypes of Mycobacterium immunogenum and Mycobacterium chelonae in metalworking fluids. FEMS Microbiol. Ecol., 2005, 54(3), 329-338. doi: 10.1016/j.femsec.2005.04.009 PMID: 16332331
  23. Chandra, H.; Yadav, J.S. Human leukocyte antigen (HLA)-binding epitopes dataset for the newly identified T-cell antigens of Mycobacterium immunogenum. Data Brief, 2016, 8, 1069-1071. doi: 10.1016/j.dib.2016.06.045 PMID: 27508266
  24. Chandra, H.; Lockey, J.; Yadav, J.S. Novel antigens of Mycobacterium immunogenum relevant in serodiagnosis of occupational hypersensitivity pneumonitis in machinists. Ann. Allergy Asthma Immunol., 2015, 114(6), 525-526.e4. doi: 10.1016/j.anai.2015.03.005 PMID: 25863449
  25. Gupta, M.K.; Subramanian, V.; Yadav, J.S. Immunoproteomic identification of secretory and subcellular protein antigens and functional evaluation of the secretome fraction of Mycobacterium immunogenum, a newly recognized species of the Mycobacterium chelonae-Mycobacterium abscessus group. J. Proteome Res., 2009, 8(5), 2319-2330. doi: 10.1021/pr8009462 PMID: 19209886
  26. Roussel, S.; Rognon, B.; Barrera, C.; Reboux, G.; Salamin, K.; Grenouillet, F.; Thaon, I.; Dalphin, J.C.; Tillie-Leblond, I.; Quadroni, M.; Monod, M.; Millon, L. Immuno-reactive proteins from Mycobacterium immunogenum useful for serodiagnosis of metalworking fluid hypersensitivity pneumonitis. Int. J. Med. Microbiol., 2011, 301(2), 150-156. doi: 10.1016/j.ijmm.2010.07.002 PMID: 20850379
  27. Selvaraju, S.B.; Khan, I.U.H.; Yadav, J.S. A new method for species identification and differentiation of Mycobacterium chelonae complex based on amplified hsp65 restriction analysis (AHSPRA). Mol. Cell. Probes, 2005, 19(2), 93-99. doi: 10.1016/j.mcp.2004.09.007 PMID: 15680210
  28. Kapoor, R.; Yadav, J.S. Expanding the mycobacterial diversity of metalworking fluids (MWFs): Evidence showing MWF colonization by Mycobacterium abscessus. FEMS Microbiol. Ecol., 2012, 79(2), 392-399. doi: 10.1111/j.1574-6941.2011.01227.x PMID: 22092754
  29. Singh, H.; Raghava, G.P.S. ProPred: Prediction of HLA-DR binding sites. Bioinformatics, 2001, 17(12), 1236-1237. doi: 10.1093/bioinformatics/17.12.1236 PMID: 11751237
  30. Kolaskar, A.S.; Tongaonkar, P.C. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett., 1990, 276(1-2), 172-174. doi: 10.1016/0014-5793(90)80535-Q PMID: 1702393
  31. Selman, M.; Pardo, A.; King, T.E., Jr Hypersensitivity pneumonitis. Am. J. Respir. Crit. Care Med., 2012, 186(4), 314-324. doi: 10.1164/rccm.201203-0513CI PMID: 22679012
  32. Thorne, P.S.; Adamcakova-Dodd, A.; Kelly, K.M.; O’Neill, M.E.; Duchaine, C. Metalworking fluid with mycobacteria and endotoxin induces hypersensitivity pneumonitis in mice. Am. J. Respir. Crit. Care Med., 2006, 173(7), 759-768. doi: 10.1164/rccm.200405-627OC PMID: 16387809
  33. Bui, H.H.; Sidney, J.; Dinh, K.; Southwood, S.; Newman, M.J.; Sette, A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 2006, 7(1), 153. doi: 10.1186/1471-2105-7-153 PMID: 16545123
  34. Sakib, M.S.; Islam, M.R.; Hasan, A.K.M.M.; Nabi, A.H.M.N. Prediction of epitope-based peptides for the utility of vaccine development from fusion and glycoprotein of nipah virus using in silico approach. Adv. Bioinforma., 2014, 2014, 1-17. doi: 10.1155/2014/402492 PMID: 25147564
  35. Li, H.; Llera, A.; Malchiodi, E.L.; Mariuzza, R.A. The structural basis of T cell activation by superantigens. Annu. Rev. Immunol., 1999, 17(1), 435-466. doi: 10.1146/annurev.immunol.17.1.435 PMID: 10358765
  36. Yu, M.; Lee, W.W.; Tomar, D.; Pryshchep, S.; Czesnikiewicz-Guzik, M.; Lamar, D.L.; Li, G.; Singh, K.; Tian, L.; Weyand, C.M.; Goronzy, J.J. Regulation of T cell receptor signaling by activation-induced zinc influx. J. Exp. Med., 2011, 208(4), 775-785. doi: 10.1084/jem.20100031 PMID: 21422171
  37. Bordon, Y. Heavy metal rocks T cells. Nat. Rev. Immunol., 2011, 11(5), 300-301. doi: 10.1038/nri2977 PMID: 21494265

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers