Dominant Circulating Cell-free Mycobacterial Proteins in In-use Machining Fluid and their Antigenicity Potential
- Authors: Chandra H.1, Ahlers B.2, Lam Y.W.2, Yadav J.1
-
Affiliations:
- Pulmonary/Microbial Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine
- Vermont Biomedical Research Network Proteomics Facility, University of Vermont
- Issue: Vol 25, No 8 (2024)
- Pages: 613-625
- Section: Life Sciences
- URL: https://archivog.com/1389-2037/article/view/645702
- DOI: https://doi.org/10.2174/0113892037291635240405042554
- ID: 645702
Cite item
Full Text
Abstract
Background:Occupational exposure to industrial Metalworking Fluid (MWF) colonized by Mycobacterium immunogenum (MI) has been associated with immune lung disease hypersensitivity pneumonitis (HP) in machinists. This warrants regular fluid monitoring for early detection of mycobacterial proteins, especially those with antigenic potential.
Objective:To detect and identify dominant MI proteins and antigens directly from the field-drawn in-use MWF using an integrated immunoproteomic and immunoinformatic approach.
Methods:An MI-positive MWF selected by DNA-based screening of several field-drawn MWF samples were cultured to isolate the colonizing strain and profiled for dominant circulating cell- free (ccf) MI proteins, including antigens using an integrated immunoproteomic (1D- and 2Dgel fractionation of seroreactivity proteins combined with shotgun proteomic analysis using LC-MS/ MS) and immunoinformatic strategy.
Results:A new MI strain (MJY-27) was identified. The gel fractionated MI protein bands (1Dgel) or spots (2D-gel) seroreactive with anti-MI sera probes (Rabbit and Patient sera) yielded 86 MI proteins, 29 of which showed peptide abundance. T-cell epitope analysis revealed high (90-100%) binding frequency for HLA-I& II alleles for 13 of the 29 proteins. Their antigenicity analysis revealed the presence of 6 to 37 antigenic determinants. Interestingly, one of the identified candidates corresponded to an experimentally validated strong B- and T-cell antigen (AgD) from our laboratory culture-based studies.
Conclusion:This first report on dominant proteins, including putative antigens of M. immunogenum prevalent in field in-use MWF, is a significant step towards the overall goal of developing fluid monitoring for exposure and disease risk assessment for HP development in machining environments.
Conclusion::This first report on dominant proteins, including putative antigens of M. immunogenum prevalent in field in-use MWF, is a significant step towards the overall goal of developing fluid monitoring for exposure and disease risk assessment for HP development in machining environments.
About the authors
Harish Chandra
Pulmonary/Microbial Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine
Email: info@benthamscience.net
Bethany Ahlers
Vermont Biomedical Research Network Proteomics Facility, University of Vermont
Email: info@benthamscience.net
Ying Wai Lam
Vermont Biomedical Research Network Proteomics Facility, University of Vermont
Email: info@benthamscience.net
Jagjit Yadav
Pulmonary/Microbial Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine
Author for correspondence.
Email: info@benthamscience.net
References
- Rosenman, K.D. Asthma, hypersensitivity pneumonitis and other respiratory diseases caused by metalworking fluids. Curr. Opin. Allergy Clin. Immunol., 2009, 9(2), 97-102. doi: 10.1097/ACI.0b013e3283229f96 PMID: 19307882
- Rosenman, K. Occupational diseases in individuals exposed to metal working fluids. Curr. Opin. Allergy Clin. Immunol., 2015, 15(2), 131-136. doi: 10.1097/ACI.0000000000000140 PMID: 25564768
- Respiratory illness in workers exposed to metalworking fluid contaminated with nontuberculous mycobacteria--Ohio, 2001. MMWR Morb. Mortal. Wkly. Rep., 2002, 51(16), 349-352. PMID: 12004986
- OBrien, D.M. Aerosol mapping of a facility with multiple cases of hypersensitivity pneumonitis: Demonstration of mist reduction and a possible dose/response relationship. Appl. Occup. Environ. Hyg., 2003, 18(11), 947-952. doi: 10.1080/10473220390237656 PMID: 14555448
- Raghu, G.; Remy-Jardin, M.; Ryerson, C.J.; Myers, J.L.; Kreuter, M.; Vasakova, M.; Bargagli, E.; Chung, J.H.; Collins, B.F.; Bendstrup, E.; Chami, H.A.; Chua, A.T.; Corte, T.J.; Dalphin, J.C.; Danoff, S.K.; Diaz-Mendoza, J.; Duggal, A.; Egashira, R.; Ewing, T.; Gulati, M.; Inoue, Y.; Jenkins, A.R.; Johannson, K.A.; Johkoh, T.; Tamae-Kakazu, M.; Kitaichi, M.; Knight, S.L.; Koschel, D.; Lederer, D.J.; Mageto, Y.; Maier, L.A.; Matiz, C.; Morell, F.; Nicholson, A.G.; Patolia, S.; Pereira, C.A.; Renzoni, E.A.; Salisbury, M.L.; Selman, M.; Walsh, S.L.F.; Wuyts, W.A.; Wilson, K.C. Diagnosis of hypersensitivity pneumonitis in adults: An official ATS/JRS/ALAT clinical practice guideline. Am. J. Respir. Crit. Care Med., 2020, 202(3), e36-e69. doi: 10.1164/rccm.202005-2032ST PMID: 32706311
- Alberti, M.L.; Rincon-Alvarez, E.; Buendia-Roldan, I.; Selman, M. Hypersensitivity pneumonitis: Diagnostic and therapeutic challenges. Front. Med., 2021, 8, 718299. doi: 10.3389/fmed.2021.718299 PMID: 34631740
- Hamblin, M.; Prosch, H.; Vaáková, M. Diagnosis, course and management of hypersensitivity pneumonitis. Eur. Respir. Rev., 2022, 31(163), 210169. doi: 10.1183/16000617.0169-2021 PMID: 35140104
- Burge, P.S. Hypersensitivity pneumonitis due to metalworking fluid aerosols. Curr. Allergy Asthma Rep., 2016, 16(8), 59. doi: 10.1007/s11882-016-0639-0 PMID: 27473679
- Nett, R.J.; Stanton, M.; Grimes, G.R. Occupational respiratory and skin diseases among workers exposed to metalworking fluids. Curr. Opin. Allergy Clin. Immunol., 2021, 21(2), 121-127. doi: 10.1097/ACI.0000000000000717 PMID: 33394701
- Cohen, H.; White, E.M. Metalworking fluid mist occupational exposure limits: A discussion of alternative methods. J. Occup. Environ. Hyg., 2006, 3(9), 501-507. doi: 10.1080/15459620600867872 PMID: 16857649
- Shelton, B.G.; Flanders, W.D.; Morris, G.K. Mycobacterium sp. as a possible cause of hypersensitivity pneumonitis in machine workers. Emerg. Infect. Dis., 1999, 5(2), 270-273. doi: 10.3201/eid0502.990213 PMID: 10221881
- Tillie-Leblond, I.; Grenouillet, F.; Reboux, G.; Roussel, S.; Chouraki, B.; Lorthois, C.; Dalphin, J.C.; Wallaert, B.; Millon, L. Hypersensitivity pneumonitis and metalworking fluids contaminated by mycobacteria. Eur. Respir. J., 2011, 37(3), 640-647. doi: 10.1183/09031936.00195009 PMID: 20693254
- Trout, D.; Weissman, D.N.; Lewis, D.; Brundage, R.A.; Franzblau, A.; Remick, D. Evaluation of hypersensitivity pneumonitis among workers exposed to metal removal fluids. Appl. Occup. Environ. Hyg., 2003, 18(11), 953-960. doi: 10.1080/10473220390237683 PMID: 14555449
- Wilson, R.W.; Steingrube, V.A.; Böttger, E.C.; Springer, B.; Brown-Elliott, B.A.; Vincent, V.; Jost, K.C.; Zhang, Y.; Garcia, M.J.; Chiu, S.H.; Onyi, G.O.; Rossmoore, H.; Nash, D.R.; Wallace, R.J. Mycobacterium immunogenum sp. nov., a novel species related to Mycobacterium abscessus and associated with clinical disease, pseudo-outbreaks and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy. Int. J. Syst. Evol. Microbiol., 2001, 51(5), 1751-1764. doi: 10.1099/00207713-51-5-1751 PMID: 11594606
- Watt, W.D. Observations on the relationship between triazines and mycobacteria in metal removal fluids. Appl. Occup. Environ. Hyg., 2003, 18(11), 961-965. doi: 10.1080/10473220390237692 PMID: 14555450
- Johansson, E.; Yadav, J.S. Differential immunogenicity and lung disease-inducing potential of mycobacterium immunogenum genotypes and impact of co-exposure with pseudomonas: Optimizing a mouse model of chronic hypersensitivity pneumonitis. Int. J. Mol. Sci., 2024, 25(4), 2058. doi: 10.3390/ijms25042058
- Johansson, E.; Boivin, G.P.; Yadav, J.S. Early immunopathological events in acute model of mycobacterial hypersensitivity pneumonitis in mice. J. Immunotoxicol., 2017, 14(1), 77-88. doi: 10.1080/1547691X.2016.1273284 PMID: 28094581
- Gordon, T.; Nadziejko, C.; Galdanes, K.; Lewis, D.; Donnelly, K. Mycobacterium immunogenum causes hypersensitivity pneumonitis-like pathology in mice. Inhal. Toxicol., 2006, 18(6), 449-456. doi: 10.1080/08958370600563904 PMID: 16556584
- Chandra, H.; Yadav, E.; Yadav, J.S. Alveolar macrophage innate response to Mycobacterium immunogenum, the etiological agent of hypersensitivity pneumonitis: Role of JNK and p38 MAPK pathways. PLoS One, 2013, 8(12), e83172. doi: 10.1371/journal.pone.0083172 PMID: 24349452
- Chandra, H.; Yadav, J.S. T-cell antigens of Mycobacterium immunogenum, an etiological agent of occupational hypersensitivity pneumonitis. Mol. Immunol., 2016, 75, 168-177. doi: 10.1016/j.molimm.2016.05.020 PMID: 27294559
- Yadav, J.S.; Khan, I.U.H.; Fakhari, F.; Soellner, M.B. DNA-based methodologies for rapid detection, quantification, and species- or strain-level identification of respiratory pathogens (Mycobacteria and Pseudomonads) in metalworking fluids. Appl. Occup. Environ. Hyg., 2003, 18(11), 966-975. doi: 10.1080/10473220390237700 PMID: 14555451
- Khan, I.U.H.; Selvaraju, S.B.; Yadav, J.S. Occurrence and characterization of multiple novel genotypes of Mycobacterium immunogenum and Mycobacterium chelonae in metalworking fluids. FEMS Microbiol. Ecol., 2005, 54(3), 329-338. doi: 10.1016/j.femsec.2005.04.009 PMID: 16332331
- Chandra, H.; Yadav, J.S. Human leukocyte antigen (HLA)-binding epitopes dataset for the newly identified T-cell antigens of Mycobacterium immunogenum. Data Brief, 2016, 8, 1069-1071. doi: 10.1016/j.dib.2016.06.045 PMID: 27508266
- Chandra, H.; Lockey, J.; Yadav, J.S. Novel antigens of Mycobacterium immunogenum relevant in serodiagnosis of occupational hypersensitivity pneumonitis in machinists. Ann. Allergy Asthma Immunol., 2015, 114(6), 525-526.e4. doi: 10.1016/j.anai.2015.03.005 PMID: 25863449
- Gupta, M.K.; Subramanian, V.; Yadav, J.S. Immunoproteomic identification of secretory and subcellular protein antigens and functional evaluation of the secretome fraction of Mycobacterium immunogenum, a newly recognized species of the Mycobacterium chelonae-Mycobacterium abscessus group. J. Proteome Res., 2009, 8(5), 2319-2330. doi: 10.1021/pr8009462 PMID: 19209886
- Roussel, S.; Rognon, B.; Barrera, C.; Reboux, G.; Salamin, K.; Grenouillet, F.; Thaon, I.; Dalphin, J.C.; Tillie-Leblond, I.; Quadroni, M.; Monod, M.; Millon, L. Immuno-reactive proteins from Mycobacterium immunogenum useful for serodiagnosis of metalworking fluid hypersensitivity pneumonitis. Int. J. Med. Microbiol., 2011, 301(2), 150-156. doi: 10.1016/j.ijmm.2010.07.002 PMID: 20850379
- Selvaraju, S.B.; Khan, I.U.H.; Yadav, J.S. A new method for species identification and differentiation of Mycobacterium chelonae complex based on amplified hsp65 restriction analysis (AHSPRA). Mol. Cell. Probes, 2005, 19(2), 93-99. doi: 10.1016/j.mcp.2004.09.007 PMID: 15680210
- Kapoor, R.; Yadav, J.S. Expanding the mycobacterial diversity of metalworking fluids (MWFs): Evidence showing MWF colonization by Mycobacterium abscessus. FEMS Microbiol. Ecol., 2012, 79(2), 392-399. doi: 10.1111/j.1574-6941.2011.01227.x PMID: 22092754
- Singh, H.; Raghava, G.P.S. ProPred: Prediction of HLA-DR binding sites. Bioinformatics, 2001, 17(12), 1236-1237. doi: 10.1093/bioinformatics/17.12.1236 PMID: 11751237
- Kolaskar, A.S.; Tongaonkar, P.C. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett., 1990, 276(1-2), 172-174. doi: 10.1016/0014-5793(90)80535-Q PMID: 1702393
- Selman, M.; Pardo, A.; King, T.E., Jr Hypersensitivity pneumonitis. Am. J. Respir. Crit. Care Med., 2012, 186(4), 314-324. doi: 10.1164/rccm.201203-0513CI PMID: 22679012
- Thorne, P.S.; Adamcakova-Dodd, A.; Kelly, K.M.; ONeill, M.E.; Duchaine, C. Metalworking fluid with mycobacteria and endotoxin induces hypersensitivity pneumonitis in mice. Am. J. Respir. Crit. Care Med., 2006, 173(7), 759-768. doi: 10.1164/rccm.200405-627OC PMID: 16387809
- Bui, H.H.; Sidney, J.; Dinh, K.; Southwood, S.; Newman, M.J.; Sette, A. Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics, 2006, 7(1), 153. doi: 10.1186/1471-2105-7-153 PMID: 16545123
- Sakib, M.S.; Islam, M.R.; Hasan, A.K.M.M.; Nabi, A.H.M.N. Prediction of epitope-based peptides for the utility of vaccine development from fusion and glycoprotein of nipah virus using in silico approach. Adv. Bioinforma., 2014, 2014, 1-17. doi: 10.1155/2014/402492 PMID: 25147564
- Li, H.; Llera, A.; Malchiodi, E.L.; Mariuzza, R.A. The structural basis of T cell activation by superantigens. Annu. Rev. Immunol., 1999, 17(1), 435-466. doi: 10.1146/annurev.immunol.17.1.435 PMID: 10358765
- Yu, M.; Lee, W.W.; Tomar, D.; Pryshchep, S.; Czesnikiewicz-Guzik, M.; Lamar, D.L.; Li, G.; Singh, K.; Tian, L.; Weyand, C.M.; Goronzy, J.J. Regulation of T cell receptor signaling by activation-induced zinc influx. J. Exp. Med., 2011, 208(4), 775-785. doi: 10.1084/jem.20100031 PMID: 21422171
- Bordon, Y. Heavy metal rocks T cells. Nat. Rev. Immunol., 2011, 11(5), 300-301. doi: 10.1038/nri2977 PMID: 21494265
Supplementary files
