Research Progress on Extracellular Matrix Involved in the Development of Preeclampsia
- Authors: Wang X.1, Zhang Q.2, Ren Y.1, Liu C.3, Gao H.3
-
Affiliations:
- School of Pharmacy, Binzhou Medical University
- Department of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences
- School of Pharmacy, Jining Medical University
- Issue: Vol 25, No 7 (2024)
- Pages: 527-538
- Section: Life Sciences
- URL: https://archivog.com/1389-2037/article/view/645669
- DOI: https://doi.org/10.2174/0113892037284176240302052521
- ID: 645669
Cite item
Full Text
Abstract
:Preeclampsia (PE) is a serious pregnancy complication, and its primary clinical manifestations are gestational hypertension and proteinuria. Trophoblasts are responsible for the basic functions of the placenta during placental development; recent studies have revealed that placental "shallow implantation" caused by the decreased invasiveness of placental trophoblasts plays a crucial role in PE pathogenesis. The interaction between the cells and the extracellular matrix (ECM) plays a crucial role in trophoblast proliferation, differentiation, and invasion. Abnormal ECM function can result in insufficient migration and invasion of placental trophoblasts, thus participating in PE. This article summarizes the recent studies on the involvement of ECM components, including small leucine-rich proteoglycans, syndecans, glypicans, laminins, fibronectin, collagen, and hyaluronic acid, in the development of PE. ECM plays various roles in PE development, most notably by controlling the activities of trophoblasts. The ECM is structurally stable and can serve as a biological diagnostic marker and therapeutic target for PE.
About the authors
Xin Wang
School of Pharmacy, Binzhou Medical University
Email: info@benthamscience.net
Qi Zhang
Department of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences
Email: info@benthamscience.net
Yi Ren
School of Pharmacy, Binzhou Medical University
Email: info@benthamscience.net
Chao Liu
School of Pharmacy, Jining Medical University
Author for correspondence.
Email: info@benthamscience.net
Huijie Gao
School of Pharmacy, Jining Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Van Rijn, B. B.; Bruinse, H. W.; Veerbeek, J. H.; Post Uiterweer, E. D.; Koenen, S. V.; Van der Bom, J. G.; Rijkers, G. T.; Roest, M.; Franx, A. Postpartum circulating markers of inflammation and the systemic acute-phase response after early-onset preeclampsia. Hypertension, 2016, 67(2), 402-414. doi: 10.1161/HYPERTENSIONAHA.115.06455
- Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, challenges, and perspectives. Circ. Res., 2019, 124(7), 1094-1112. doi: 10.1161/CIRCRESAHA.118.313276 PMID: 30920918
- Chappell, L.C.; Cluver, C.A.; Kingdom, J.; Tong, S. Pre-eclampsia. Lancet, 2021, 398(10297), 341-354. doi: 10.1016/S0140-6736(20)32335-7 PMID: 34051884
- Liu, M.; Yin, Y.; Yu, H.; Zhou, R. Laminins regulate placentation and pre-eclampsia: Focus on trophoblasts and endothelial cells. Front. Cell Dev. Biol., 2020, 8, 754. doi: 10.3389/fcell.2020.00754 PMID: 32850857
- Stevens, D. U.; Al-Nasiry, S.; Bulten, J.; Spaanderman, M. E. Decidual vasculopathy in preeclampsia: Lesion characteristics relate to disease severity and perinatal outcome. Placenta, 2013, 34(9), 805-809. doi: 10.1016/j.placenta.2013.05.008
- Kalkunte, S.; Lai, Z.; Tewari, N.; Chichester, C.; Romero, R.; Padbury, J.; Sharma, S. In vitro and in vivo evidence for lack of endovascular remodeling by third trimester trophoblasts. Placenta, 2008, 29(10), 871-878. doi: 10.1016/j.placenta.2008.07.009 PMID: 18775564
- Sibai, B.; Dekker, G.; Kupferminc, M. Pre-eclampsia. Lancet, 2005, 365(9461), 785-799. doi: 10.1016/S0140-6736(05)17987-2 PMID: 15733721
- Burton, G.J.; Redman, C.W.; Roberts, J.M.; Moffett, A. Pre-eclampsia: Pathophysiology and clinical implications. BMJ, 2019, 366, l2381. doi: 10.1136/bmj.l2381 PMID: 31307997
- Velicky, P.; Meinhardt, G.; Plessl, K.; Vondra, S.; Weiss, T.; Haslinger, P.; Lendl, T.; Aumayr, K.; Mairhofer, M.; Zhu, X.; Schütz, B.; Hannibal, R.L.; Lindau, R.; Weil, B.; Ernerudh, J.; Neesen, J.; Egger, G.; Mikula, M.; Röhrl, C.; Urban, A.E.; Baker, J.; Knöfler, M.; Pollheimer, J. Genome amplification and cellular senescence are hallmarks of human placenta development. PLoS Genet., 2018, 14(10), e1007698. doi: 10.1371/journal.pgen.1007698 PMID: 30312291
- Goldman-Wohl, D, Y. S. Regulation of trophoblast invasion from normal implantation to pre-eclampsia. Mol. Cell. Endocrinol., 2002, 187(1-2), 233-238. doi: 10.1016/S0303-7207(01)00687-6
- Farrell, A.; Alahari, S.; Ermini, L.; Tagliaferro, A.; Litvack, M.; Post, M.; Caniggia, I. Faulty oxygen sensing disrupts angiomotin function in trophoblast cell migration and predisposes to preeclampsia. JCI Insight, 2019, 4(8), e127009. doi: 10.1172/jci.insight.127009 PMID: 30996134
- Shi, Z.; She, K.; Li, H.; Yuan, X.; Han, X.; Wang, Y. MicroRNA-454 contributes to sustaining the proliferation and invasion of trophoblast cells through inhibiting Nodal/ALK7 signaling in pre-eclampsia. Chem. Biol. Interact., 2019, 298, 8-14. doi: 10.1016/j.cbi.2018.10.012 PMID: 30367833
- Liu, S.; Sun, Y.; Tang, Y.; Hu, R.; Zhou, Q.; Li, X. IL-25 promotes trophoblast proliferation and invasion via binding with IL-17RB and associated with PE. Hypertens Pregnancy., 2021, 40(3), 209-217.
- Armant, D.R. Blastocysts dont go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Dev. Biol., 2005, 280(2), 260-280. doi: 10.1016/j.ydbio.2005.02.009 PMID: 15882572
- Abbas, Y.; Carnicer-Lombarte, A.; Gardner, L.; Thomas, J.; Brosens, J.J.; Moffett, A.; Sharkey, A.M.; Franze, K.; Burton, G.J.; Oyen, M.L. Tissue stiffness at the human maternal-fetal interface. Hum. Reprod., 2019, 34(10), 1999-2008. doi: 10.1093/humrep/dez139
- Kim, J.H.; Jekarl, D.W.; Kim, M.; Oh, E.J.; Kim, Y.; Park, I.Y.; Shin, J.C. Effects of ECM protein mimetics on adhesion and proliferation of chorion derived mesenchymal stem cells. Int. J. Med. Sci., 2014, 11(3), 298-308. doi: 10.7150/ijms.6672 PMID: 24516355
- Schaefer, L.; Schaefer, R.M. Proteoglycans: From structural compounds to signaling molecules. Cell Tissue Res., 2010, 339(1), 237-246. doi: 10.1007/s00441-009-0821-y PMID: 19513755
- Iozzo, R. V.; Schaefer, L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol, 2015, 42, 11-55. doi: 10.1016/j.matbio.2015.02.003
- Perrimon, N.; Bernfield, M. Cellular functions of proteoglycansan overview. Semin. Cell Dev. Biol., 2001, 12(2), 65-67. doi: 10.1006/scdb.2000.0237 PMID: 11292371
- Oravecz, O.; Balogh, A.; Romero, R.; Xu, Y.; Juhasz, K.; Gelencser, Z.; Xu, Z.; Bhatti, G.; Pique-Regi, R.; Peterfia, B.; Hupuczi, P.; Kovalszky, I.; Murthi, P.; Tarca, A.L.; Papp, Z.; Matko, J.; Than, N.G. Proteoglycans: Systems-level insight into their expression in healthy and diseased placentas. Int. J. Mol. Sci., 2022, 23(10), 5798. doi: 10.3390/ijms23105798 PMID: 35628608
- Chui, A.; Murthi, P.; Brennecke, S.P.; Ignjatovic, V.; Monagle, P.T.; Said, J.M. The expression of placental proteoglycans in pre-eclampsia. Gynecol. Obstet. Invest., 2012, 73(4), 277-284. doi: 10.1159/000333262 PMID: 22516801
- Merline, R.; Schaefer, R.M.; Schaefer, L. The matricellular functions of small leucine-rich proteoglycans (SLRPs). J. Cell Commun. Signal., 2009, 3(3-4), 323-335. doi: 10.1007/s12079-009-0066-2 PMID: 19809894
- Low, S.W.Y.; Connor, T.B.; Kassem, I.S.; Costakos, D.M.; Chaurasia, S.S. Small leucine-rich proteoglycans (SLRPs) in the retina. Int. J. Mol. Sci., 2021, 22(14), 7293. doi: 10.3390/ijms22147293 PMID: 34298915
- Pang, X.; Dong, N.; Zheng, Z. Small leucine-rich proteoglycans in skin wound healing. Front. Pharmacol., 2020, 10, 1649. doi: 10.3389/fphar.2019.01649 PMID: 32063855
- Naito, Z. Role of the small leucine-rich proteoglycan (SLRP) family in pathological lesions and cancer cell growth. J. Nippon Med. Sch., 2005, 72(3), 137-145. doi: 10.1272/jnms.72.137 PMID: 16046829
- Schaefer, L.; Iozzo, R.V. Biological functions of the small leucine-rich proteoglycans: From genetics to signal transduction. J. Biol. Chem., 2008, 283(31), 21305-21309. doi: 10.1074/jbc.R800020200 PMID: 18463092
- Neill, T.; Schaefer, L.; Iozzo, R.V. Decorin: A guardian from the matrix. Am. J. Pathol., 2012, 181(2), 380-387. doi: 10.1016/j.ajpath.2012.04.029 PMID: 22735579
- Iacob, D.; Cai, J.; Tsonis, M.; Babwah, A.; Chakraborty, C.; Bhattacharjee, R.N.; Lala, P.K. Decorin-mediated inhibition of proliferation and migration of the human trophoblast via different tyrosine kinase receptors. Endocrinology, 2008, 149(12), 6187-6197. doi: 10.1210/en.2008-0780 PMID: 18703624
- Nandi, P.; Siddiqui, M.F.; Lala, P.K. Restraint of trophoblast invasion of the uterus by decorin: Role in pre-eclampsia. Am. J. Reprod. Immunol., 2016, 75(3), 351-360. doi: 10.1111/aji.12449 PMID: 26554635
- Lala, P.K.; Nandi, P. Mechanisms of trophoblast migration, endometrial angiogenesis in preeclampsia: The role of decorin. Cell Adhes. Migr., 2016, 10(1-2), 111-125. doi: 10.1080/19336918.2015.1106669 PMID: 26745663
- Zou, Y.; Yu, X.; Lu, J.; Jiang, Z.; Zuo, Q.; Fan, M.; Huang, S.; Sun, L. Decorin-mediated inhibition of human trophoblast cells proliferation, migration, and invasion and promotion of apoptosis in vitro. BioMed. Res. Int., 2015, 2015, 1-10. doi: 10.1155/2015/201629 PMID: 26357650
- Chakravarti, S. Primary structure of human lumican (keratan sulfate proteoglycan) and localization of the gene (LUM) to chromosome 12q21.3-q22. Genomics, 1995, 27(3), 481-488. doi: 10.1006/geno.1995.1080
- Chakravarti, S.; Petroll, W.M.; Hassell, J.R.; Jester, J.V.; Lass, J.H.; Paul, J.; Birk, D.E. Corneal opacity in lumican-null mice: Defects in collagen fibril structure and packing in the posterior stroma. Invest. Ophthalmol. Vis. Sci., 2000, 41(11), 3365-3373. PMID: 11006226
- Cornuet, P.K.B.; Blochberger, T.C.; Hassell, J.R. Molecular polymorphism of lumican during corneal development. Invest. Ophthalmol. Vis. Sci., 1994, 35(3), 870-877. PMID: 8125750
- Chen, L.; Zhang, Y.; Zuo, Y.; Ma, F.; Song, H. Lumican expression in gastric cancer and its association with biological behavior and prognosis. Oncol. Lett., 2017, 14(5), 5235-5240. doi: 10.3892/ol.2017.6842 PMID: 29098025
- Liu, C.; Hu, Y.; Wang, Z.; Pan, H.; Ren, Y.; Li, X.; Liu, Z.; Gao, H. The downregulation of placental lumican promotes the progression of preeclampsia. Reprod. Sci., 2021, 28(11), 3147-3154. doi: 10.1007/s43032-021-00660-w PMID: 34231169
- Nastase, M.V.; Young, M.F.; Schaefer, L. Biglycan: A multivalent proteoglycan providing structure and signals. J. Histochem. Cytochem., 2012, 60(12), 963-975. doi: 10.1369/0022155412456380 PMID: 22821552
- Appunni, S.; Rubens, M.; Ramamoorthy, V.; Anand, V.; Khandelwal, M.; Sharma, A. Biglycan: An emerging small leucine-rich proteoglycan (SLRP) marker and its clinicopathological significance. Mol. Cell. Biochem., 2021, 476(11), 3935-3950. doi: 10.1007/s11010-021-04216-z PMID: 34181183
- Gogiel, T.; Galewska, Z.; Romanowicz, L.; Jaworski, S.; Bańkowski, E. Pre-eclampsia-associated alterations in decorin, biglycan and versican of the umbilical cord vein wall. Eur. J. Obstet. Gynecol. Reprod. Biol., 2007, 134(1), 51-56. doi: 10.1016/j.ejogrb.2006.10.003 PMID: 17097211
- Roedig, H.; Nastase, M.V.; Frey, H.; Moreth, K.; Zeng-Brouwers, J.; Poluzzi, C.; Hsieh, L.T.H.; Brandts, C.; Fulda, S.; Wygrecka, M.; Schaefer, L. Biglycan is a new high-affinity ligand for CD14 in macrophages. Matrix Biol., 2019, 77, 4-22. doi: 10.1016/j.matbio.2018.05.006 PMID: 29777767
- Schaefer, L.; Babelova, A.; Kiss, E.; Hausser, H.J.; Baliova, M.; Krzyzankova, M.; Marsche, G.; Young, M.F.; Mihalik, D.; Götte, M.; Malle, E.; Schaefer, R.M.; Gröne, H.J. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J. Clin. Invest., 2005, 115(8), 2223-2233. doi: 10.1172/JCI23755 PMID: 16025156
- Afratis, N.A.; Nikitovic, D.; Multhaupt, H.A.B.; Theocharis, A.D.; Couchman, J.R.; Karamanos, N.K. Syndecans key regulators of cell signaling and biological functions. FEBS J., 2017, 284(1), 27-41. doi: 10.1111/febs.13940 PMID: 27790852
- Shriver, Z.; Capila, I.; Venkataraman, G.; Sasisekharan, R. Heparin and heparan sulfate: Analyzing structure and microheterogeneity. Handb. Exp. Pharmacol., 2012, 207(207), 159-176. doi: 10.1007/978-3-642-23056-1_8 PMID: 22566225
- Czarnowski, D. Syndecans in cancer: A review of function, expression, prognostic value, and therapeutic significance. Cancer Treat. Res. Commun., 2021, 27, 100312. doi: 10.1016/j.ctarc.2021.100312
- Jokimaa, V.I.S.; Kujari, H.P.; Ekholm, E.M.K.; Inki, P.L.K.; Anttila, L. Placental expression of syndecan 1 is diminished in preeclampsia. Am. J. Obstet. Gynecol., 2000, 183(6), 1495-1498. doi: 10.1067/mob.2000.107320 PMID: 11120517
- Yoneda, A.; Couchman, J.R. Regulation of cytoskeletal organization by syndecan transmembrane proteoglycans. Matrix Biol., 2003, 22(1), 25-33. doi: 10.1016/S0945-053X(03)00010-6 PMID: 12714039
- Heyer-Chauhan, N.; Ovbude, I.J.; Hills, A.A.; Sullivan, M.H.; Hills, F.A. Placental syndecan-1 and sulphated glycosaminoglycans are decreased in preeclampsia. J. Perinat. Med., 2014, 42(3), 329-338. doi: 10.1515/jpm-2013-0097 PMID: 24222257
- Novotny, W.F.; Palmier, M.; Wun, T.C.; Broze, G.J.J., Jr; Miletich, J.P. Purification and properties of heparin-releasable lipoprotein- associated coagulation inhibitor. Blood, 1991, 78(2), 394-400. doi: 10.1182/blood.V78.2.394.394 PMID: 2070077
- Elenius, K.; Määttä, A.; Salmivirta, M.; Jalkanen, M. Growth factors induce 3T3 cells to express bFGF-binding syndecan. J. Biol. Chem., 1992, 267(9), 6435-6441. doi: 10.1016/S0021-9258(18)42715-9 PMID: 1556147
- Filmus, J.; Capurro, M.; Rast, J. Glypicans. Genome Biol., 2008, 9(5), 224. doi: 10.1186/gb-2008-9-5-224 PMID: 18505598
- Khan, S.; Blackburn, M.; Mao, D.L.; Huber, R.; Schlessinger, D.; Fant, M. Glypican-3 (GPC3) expression in human placenta: Localization to the differentiated syncytiotrophoblast. Histol. Histopathol., 2001, 16(1), 71-78. doi: 10.14670/HH-16.71 PMID: 11193214
- Neaud, V.; Duplantier, J.G.; Mazzocco, C.; Kisiel, W.; Rosenbaum, J. Thrombin up-regulates tissue factor pathway inhibitor-2 synthesis through a cyclooxygenase-2-dependent, epidermal growth factor receptor-independent mechanism. J. Biol. Chem., 2004, 279(7), 5200-5206. doi: 10.1074/jbc.M306679200 PMID: 14623891
- Hohenester, E. Structural biology of laminins. Essays Biochem., 2019, 63(3), 285-295. doi: 10.1042/EBC20180075 PMID: 31092689
- Hohenester, E.; Yurchenco, P.D. Laminins in basement membrane assembly. Cell Adhes. Migr., 2013, 7(1), 56-63. doi: 10.4161/cam.21831 PMID: 23076216
- Savino, W.; Mendes-da-Cruz, D.A.; Golbert, D.C.F.; Riederer, I.; Cotta-de-Almeida, V. Laminin-mediated interactions in thymocyte migration and development. Front. Immunol., 2015, 6, 579. doi: 10.3389/fimmu.2015.00579 PMID: 26635793
- Givant-Horwitz, V.; Davidson, B.; Reich, R. Laminin-induced signaling in tumor cells: the role of the M(r) 67,000 laminin receptor. Cancer Res., 2004, 64(10), 3572-3579. doi: 10.1158/0008-5472.CAN-03-3424 PMID: 15150114
- Ma, K.; Jin, H.; Hu, R.; Xiong, Y.; Zhou, S.; Ting, P.; Cheng, Y.; Yang, Y.; Yang, P.; Li, X. A proteomic analysis of placental trophoblastic cells in preeclampsia-eclampsia. Cell Biochem. Biophys., 2014, 69(2), 247-258. doi: 10.1007/s12013-013-9792-4 PMID: 24343450
- Miner, J.H.; Cunningham, J.; Sanes, J.R. Roles for laminin in embryogenesis: Exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J. Cell Biol., 1998, 143(6), 1713-1723. doi: 10.1083/jcb.143.6.1713 PMID: 9852162
- Zhang, X.M.; Xiong, X.; Tong, C.; Li, Q.; Huang, S.; Li, Q.S.; Liu, Y.M.; Li, H.Y.; Baker, P.; Shan, N.; Qi, H.B. Down-regulation of laminin (LN)- α5 is associated with preeclampsia and impairs trophoblast cell viability and invasiveness through PI3K signaling pathway. Cell. Physiol. Biochem., 2018, 51(5), 2030-2040. doi: 10.1159/000495822 PMID: 30522103
- Ji, Y.; Zhou, L.; Wang, G.; Qiao, Y.; Tian, Y.; Feng, Y. Role of LAMA4 gene in regulating extravillous trophoblasts in pathogenesis of preeclampsia. Med. Sci. Monit., 2019, 25, 9630-9636. doi: 10.12659/MSM.917402 PMID: 31842202
- Hynes, R. Interactions of Fibronectins; Springer-Verlag: New York, 1990, 28, pp. (11)1561-1567. doi: 10.17219/acem/104531
- Speziale, P.; Arciola, C.R.; Pietrocola, G. Fibronectin and its role in human infective diseases. Cells, 2019, 8(12), 1516. doi: 10.3390/cells8121516 PMID: 31779172
- Dalton, C.J.; Lemmon, C.A. Fibronectin: Molecular structure, fibrillar structure and mechanochemical signaling. Cells, 2021, 10(9), 2443. doi: 10.3390/cells10092443 PMID: 34572092
- Wu, H.; Liu, K.; Zhang, J. Excess fibronectin 1 participates in pathogenesis of pre-eclampsia by promoting apoptosis and autophagy in vascular endothelial cells. Mol. Hum. Reprod., 2021, 27(6), gaab030. doi: 10.1093/molehr/gaab030 PMID: 33881516
- Jiang, R.; Wang, T.; Zhou, F.; Yao, Y.; He, J.; Xu, D. Bioinformatics-based identification of miRNA-, lncRNA-, and mRNA-associated ceRNA networks and potential biomarkers for preeclampsia. Medicine, 2020, 99(45), e22985. doi: 10.1097/MD.0000000000022985 PMID: 33157942
- Tjoa, M.L.; Oudejans, C.B.M.; Van Vugt, J.M.G.; Blankenstein, M.A.; van Wijk, I.J. Markers for presymptomatic prediction of preeclampsia and intrauterine growth restriction. Hypertens. Pregnancy, 2004, 23(2), 171-189. doi: 10.1081/PRG-120028292 PMID: 15369650
- Shi, J.W.; Lai, Z.Z.; Yang, H.L.; Yang, S.L.; Wang, C.J.; Ao, D.; Ruan, L.Y.; Shen, H.H.; Zhou, W.J.; Mei, J.; Fu, Q.; Li, M.Q. Collagen at the maternal-fetal interface in human pregnancy. Int. J. Biol. Sci., 2020, 16(12), 2220-2234. doi: 10.7150/ijbs.45586 PMID: 32549767
- Heino, J. The collagen family members as cell adhesion proteins. BioEssays, 2007, 29(10), 1001-1010. doi: 10.1002/bies.20636 PMID: 17876790
- Xu, P.; W, Y.; Piao, Y.; Bai, S.; Xiao, Z.; Jia, Y.; Luo, S; Zhuang, L. Effects of matrix proteins on the expression of matrix metalloproteinase-2, -9, and -14 and tissue inhibitors of metalloproteinases in human cytotrophoblast cells during the first trimester. Biol. Reprod., 2001, 65(1), 240-246.
- Xu, X.H.; Jia, Y.; Zhou, X.; Xie, D.; Huang, X.; Jia, L.; Zhou, Q.; Zheng, Q.; Zhou, X.; Wang, K.; Jin, L.P. Downregulation of lysyl oxidase and lysyl oxidase-like protein 2 suppressed the migration and invasion of trophoblasts by activating the TGF-β/collagen pathway in preeclampsia. Exp. Mol. Med., 2019, 51(2), 1-12. doi: 10.1038/s12276-019-0211-9 PMID: 30804321
- Feng, Y.; Chen, X.; Wang, H.; Chen, X.; Lan, Z.; Li, P.; Cao, Y.; Liu, M.; Lv, J.; Chen, Y.; Wang, Y.; Sheng, C.; Huang, Y.; Zhong, M.; Wang, Z.; Yue, X.; Huang, L.; Collagen, I. Collagen I induces preeclampsia-like symptoms by suppressing proliferation and invasion of trophoblasts. Front. Endocrinol., 2021, 12, 664766. doi: 10.3389/fendo.2021.664766 PMID: 34421817
- Mousa, A.A.; Cappello, R.E.; Estrada-Gutierrez, G.; Shukla, J.; Romero, R.; Strauss, J.F., III; Walsh, S.W. Preeclampsia is associated with alterations in DNA methylation of genes involved in collagen metabolism. Am. J. Pathol., 2012, 181(4), 1455-1463. doi: 10.1016/j.ajpath.2012.06.019 PMID: 22863954
- Abatangelo, G.; Vindigni, V.; Avruscio, G.; Pandis, L.; Brun, P. Hyaluronic Acid: Redefining its role. Cells, 2020, 9(7), 1743. doi: 10.3390/cells9071743 PMID: 32708202
- Heldin, P.; Basu, K.; Olofsson, B.; Porsch, H.; Kozlova, I.; Kahata, K. Deregulation of hyaluronan synthesis, degradation and binding promotes breast cancer. J. Biochem., 2013, 154(5), 395-408. doi: 10.1093/jb/mvt085 PMID: 24092768
- Castellucci, M.; Kosanke, G.; Verdenelli, F.; Huppertz, B.; Kaufmann, P. Villous sprouting: Fundamental mechanisms of human placental development. Hum. Reprod. Update, 2000, 6(5), 485-494. doi: 10.1093/humupd/6.5.485 PMID: 11045879
- San Martin, S.; Soto-Suazo, M.; Zorn, T.M.T. Distribution of versican and hyaluronan in the mouse uterus during decidualization. Braz. J. Med. Biol. Res., 2003, 36(8), 1067-1071. doi: 10.1590/S0100-879X2003000800013 PMID: 12886461
- Uzun, H.; Konukoglu, D.; Albayrak, M.; Benian, A.; Madazli, R.; Aydin, S.; Gelisgen, R.; Uludag, S. Increased maternal serum and cord blood fibronectin concentrations in preeclampsia are associated with higher placental hyaluronic acid and hydroxyproline content. Hypertens. Pregnancy, 2010, 29(2), 153-162. doi: 10.3109/10641950902968619 PMID: 20367505
- Liang, J.; Jiang, D.; Griffith, J.; Yu, S.; Fan, J.; Zhao, X.; Bucala, R.; Noble, P.W. CD44 is a negative regulator of acute pulmonary inflammation and lipopolysaccharide-TLR signaling in mouse macrophages. J. Immunol., 2007, 178(4), 2469-2475. doi: 10.4049/jimmunol.178.4.2469 PMID: 17277154
- Stefańska, K.; Zieliński, M.; Jankowiak, M.; Zamkowska, D.; Sakowska, J.; Adamski, P.; Jassem-Bobowicz, J.; Piekarska, K.; Leszczyńska, K.; Świątkowska-Stodulska, R.; Kwiatkowski, S.; Preis, K.; Trzonkowski, P.; Marek-Trzonkowska, N. Cytokine imprint in preeclampsia. Front. Immunol., 2021, 12, 667841. doi: 10.3389/fimmu.2021.667841 PMID: 34248946
- Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 2001, 17(1), 463-516. doi: 10.1146/annurev.cellbio.17.1.463 PMID: 11687497
- Klein, T.; Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids, 2011, 41(2), 271-290. doi: 10.1007/s00726-010-0689-x PMID: 20640864
- Newby, A.C. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev., 2005, 85(1), 1-31. doi: 10.1152/physrev.00048.2003 PMID: 15618476
- Sahay, A.S.; Jadhav, A.T.; Sundrani, D.P.; Wagh, G.N.; Mehendale, S.S.; Joshi, S.R. Matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9) are differentially expressed in different regions of normal and preeclampsia placentae. J. Cell. Biochem., 2018, 119(8), 6657-6664. doi: 10.1002/jcb.26849 PMID: 29665148
- Suo, M.; Sun, Y.; Yang, H.; Ji, J.; He, Y.; Dong, L.; Wang, Y.; Zhang, Y.; Zhang, Y.; Hao, M. miR-183-5p suppressed the invasion and migration of HTR-8/SVneo trophoblast cells partly via targeting MMP-9 in preeclampsia. Biosci. Rep., 2020, 40(6), BSR20192575. doi: 10.1042/BSR20192575 PMID: 32342983
- Timokhina, E.; Strizhakov, A.; Ibragimova, S.; Gitel, E.; Ignatko, I.; Belousova, V.; Zafiridi, N. Matrix metalloproteinases MMP-2 and MMP-9 occupy a new role in severe preeclampsia. J. Pregnancy, 2020, 2020(1-2), 1-7. doi: 10.1155/2020/8369645 PMID: 33381317
- Ng, E.K.O.; Leung, T.N.; Tsui, N.B.Y.; Lau, T.K.; Panesar, N.S.; Chiu, R.W.K.; Lo, Y.M.D. The concentration of circulating corticotropin-releasing hormone mRNA in maternal plasma is increased in preeclampsia. Clin. Chem., 2003, 49(5), 727-731. doi: 10.1373/49.5.727 PMID: 12709362
- Nishikawa, S.; Miyamoto, A.; Yamamoto, H.; Ohshika, H.; Kudo, R. The relationship between serum nitrate and endothelin-1 concentrations in preeclampsia. Life Sci., 2000, 67(12), 1447-1454. doi: 10.1016/S0024-3205(00)00736-0 PMID: 10983841
- Cohen, M.; Ribaux, P.; Epiney, M.; Irion, O. Expression of metalloproteinases 1, 2, 7, 9, and 12 in human cytotrophoblastic cells from normal and preeclamptic placentas. Neuroendocrinol. Lett., 2012, 33(4), 406-411. PMID: 22936257
- Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol., 2007, 8(3), 221-233. doi: 10.1038/nrm2125 PMID: 17318226
- Khan, G.A.; Girish, G.V.; Lala, N.; Di Guglielmo, G.M.; Lala, P.K. Decorin is a novel VEGFR-2-binding antagonist for the human extravillous trophoblast. Mol. Endocrinol., 2011, 25(8), 1431-1443. doi: 10.1210/me.2010-0426 PMID: 21659473
- Siddiqui, M. F.; Nandi, P.; Girish, G. V.; Nygard, K.; Eastabrook, G.; de Vrijer, B.; Han, V. K.; Lala, P. K. Decorin over-expression by decidual cells in preeclampsia: A potential blood biomarker. Am J Obstet Gynecol, 2016, 215(3), 361 e1-361 e6. doi: 10.1016/j.ajog.2016.03.020
Supplementary files
