Research Progress on Extracellular Matrix Involved in the Development of Preeclampsia


Cite item

Full Text

Abstract

:Preeclampsia (PE) is a serious pregnancy complication, and its primary clinical manifestations are gestational hypertension and proteinuria. Trophoblasts are responsible for the basic functions of the placenta during placental development; recent studies have revealed that placental "shallow implantation" caused by the decreased invasiveness of placental trophoblasts plays a crucial role in PE pathogenesis. The interaction between the cells and the extracellular matrix (ECM) plays a crucial role in trophoblast proliferation, differentiation, and invasion. Abnormal ECM function can result in insufficient migration and invasion of placental trophoblasts, thus participating in PE. This article summarizes the recent studies on the involvement of ECM components, including small leucine-rich proteoglycans, syndecans, glypicans, laminins, fibronectin, collagen, and hyaluronic acid, in the development of PE. ECM plays various roles in PE development, most notably by controlling the activities of trophoblasts. The ECM is structurally stable and can serve as a biological diagnostic marker and therapeutic target for PE.

About the authors

Xin Wang

School of Pharmacy, Binzhou Medical University

Email: info@benthamscience.net

Qi Zhang

Department of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences

Email: info@benthamscience.net

Yi Ren

School of Pharmacy, Binzhou Medical University

Email: info@benthamscience.net

Chao Liu

School of Pharmacy, Jining Medical University

Author for correspondence.
Email: info@benthamscience.net

Huijie Gao

School of Pharmacy, Jining Medical University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Van Rijn, B. B.; Bruinse, H. W.; Veerbeek, J. H.; Post Uiterweer, E. D.; Koenen, S. V.; Van der Bom, J. G.; Rijkers, G. T.; Roest, M.; Franx, A. Postpartum circulating markers of inflammation and the systemic acute-phase response after early-onset preeclampsia. Hypertension, 2016, 67(2), 402-414. doi: 10.1161/HYPERTENSIONAHA.115.06455
  2. Rana, S.; Lemoine, E.; Granger, J.P.; Karumanchi, S.A. Preeclampsia: Pathophysiology, challenges, and perspectives. Circ. Res., 2019, 124(7), 1094-1112. doi: 10.1161/CIRCRESAHA.118.313276 PMID: 30920918
  3. Chappell, L.C.; Cluver, C.A.; Kingdom, J.; Tong, S. Pre-eclampsia. Lancet, 2021, 398(10297), 341-354. doi: 10.1016/S0140-6736(20)32335-7 PMID: 34051884
  4. Liu, M.; Yin, Y.; Yu, H.; Zhou, R. Laminins regulate placentation and pre-eclampsia: Focus on trophoblasts and endothelial cells. Front. Cell Dev. Biol., 2020, 8, 754. doi: 10.3389/fcell.2020.00754 PMID: 32850857
  5. Stevens, D. U.; Al-Nasiry, S.; Bulten, J.; Spaanderman, M. E. Decidual vasculopathy in preeclampsia: Lesion characteristics relate to disease severity and perinatal outcome. Placenta, 2013, 34(9), 805-809. doi: 10.1016/j.placenta.2013.05.008
  6. Kalkunte, S.; Lai, Z.; Tewari, N.; Chichester, C.; Romero, R.; Padbury, J.; Sharma, S. In vitro and in vivo evidence for lack of endovascular remodeling by third trimester trophoblasts. Placenta, 2008, 29(10), 871-878. doi: 10.1016/j.placenta.2008.07.009 PMID: 18775564
  7. Sibai, B.; Dekker, G.; Kupferminc, M. Pre-eclampsia. Lancet, 2005, 365(9461), 785-799. doi: 10.1016/S0140-6736(05)17987-2 PMID: 15733721
  8. Burton, G.J.; Redman, C.W.; Roberts, J.M.; Moffett, A. Pre-eclampsia: Pathophysiology and clinical implications. BMJ, 2019, 366, l2381. doi: 10.1136/bmj.l2381 PMID: 31307997
  9. Velicky, P.; Meinhardt, G.; Plessl, K.; Vondra, S.; Weiss, T.; Haslinger, P.; Lendl, T.; Aumayr, K.; Mairhofer, M.; Zhu, X.; Schütz, B.; Hannibal, R.L.; Lindau, R.; Weil, B.; Ernerudh, J.; Neesen, J.; Egger, G.; Mikula, M.; Röhrl, C.; Urban, A.E.; Baker, J.; Knöfler, M.; Pollheimer, J. Genome amplification and cellular senescence are hallmarks of human placenta development. PLoS Genet., 2018, 14(10), e1007698. doi: 10.1371/journal.pgen.1007698 PMID: 30312291
  10. Goldman-Wohl, D, Y. S. Regulation of trophoblast invasion from normal implantation to pre-eclampsia. Mol. Cell. Endocrinol., 2002, 187(1-2), 233-238. doi: 10.1016/S0303-7207(01)00687-6
  11. Farrell, A.; Alahari, S.; Ermini, L.; Tagliaferro, A.; Litvack, M.; Post, M.; Caniggia, I. Faulty oxygen sensing disrupts angiomotin function in trophoblast cell migration and predisposes to preeclampsia. JCI Insight, 2019, 4(8), e127009. doi: 10.1172/jci.insight.127009 PMID: 30996134
  12. Shi, Z.; She, K.; Li, H.; Yuan, X.; Han, X.; Wang, Y. MicroRNA-454 contributes to sustaining the proliferation and invasion of trophoblast cells through inhibiting Nodal/ALK7 signaling in pre-eclampsia. Chem. Biol. Interact., 2019, 298, 8-14. doi: 10.1016/j.cbi.2018.10.012 PMID: 30367833
  13. Liu, S.; Sun, Y.; Tang, Y.; Hu, R.; Zhou, Q.; Li, X. IL-25 promotes trophoblast proliferation and invasion via binding with IL-17RB and associated with PE. Hypertens Pregnancy., 2021, 40(3), 209-217.
  14. Armant, D.R. Blastocysts don’t go it alone. Extrinsic signals fine-tune the intrinsic developmental program of trophoblast cells. Dev. Biol., 2005, 280(2), 260-280. doi: 10.1016/j.ydbio.2005.02.009 PMID: 15882572
  15. Abbas, Y.; Carnicer-Lombarte, A.; Gardner, L.; Thomas, J.; Brosens, J.J.; Moffett, A.; Sharkey, A.M.; Franze, K.; Burton, G.J.; Oyen, M.L. Tissue stiffness at the human maternal-fetal interface. Hum. Reprod., 2019, 34(10), 1999-2008. doi: 10.1093/humrep/dez139
  16. Kim, J.H.; Jekarl, D.W.; Kim, M.; Oh, E.J.; Kim, Y.; Park, I.Y.; Shin, J.C. Effects of ECM protein mimetics on adhesion and proliferation of chorion derived mesenchymal stem cells. Int. J. Med. Sci., 2014, 11(3), 298-308. doi: 10.7150/ijms.6672 PMID: 24516355
  17. Schaefer, L.; Schaefer, R.M. Proteoglycans: From structural compounds to signaling molecules. Cell Tissue Res., 2010, 339(1), 237-246. doi: 10.1007/s00441-009-0821-y PMID: 19513755
  18. Iozzo, R. V.; Schaefer, L. Proteoglycan form and function: A comprehensive nomenclature of proteoglycans. Matrix Biol, 2015, 42, 11-55. doi: 10.1016/j.matbio.2015.02.003
  19. Perrimon, N.; Bernfield, M. Cellular functions of proteoglycans—an overview. Semin. Cell Dev. Biol., 2001, 12(2), 65-67. doi: 10.1006/scdb.2000.0237 PMID: 11292371
  20. Oravecz, O.; Balogh, A.; Romero, R.; Xu, Y.; Juhasz, K.; Gelencser, Z.; Xu, Z.; Bhatti, G.; Pique-Regi, R.; Peterfia, B.; Hupuczi, P.; Kovalszky, I.; Murthi, P.; Tarca, A.L.; Papp, Z.; Matko, J.; Than, N.G. Proteoglycans: Systems-level insight into their expression in healthy and diseased placentas. Int. J. Mol. Sci., 2022, 23(10), 5798. doi: 10.3390/ijms23105798 PMID: 35628608
  21. Chui, A.; Murthi, P.; Brennecke, S.P.; Ignjatovic, V.; Monagle, P.T.; Said, J.M. The expression of placental proteoglycans in pre-eclampsia. Gynecol. Obstet. Invest., 2012, 73(4), 277-284. doi: 10.1159/000333262 PMID: 22516801
  22. Merline, R.; Schaefer, R.M.; Schaefer, L. The matricellular functions of small leucine-rich proteoglycans (SLRPs). J. Cell Commun. Signal., 2009, 3(3-4), 323-335. doi: 10.1007/s12079-009-0066-2 PMID: 19809894
  23. Low, S.W.Y.; Connor, T.B.; Kassem, I.S.; Costakos, D.M.; Chaurasia, S.S. Small leucine-rich proteoglycans (SLRPs) in the retina. Int. J. Mol. Sci., 2021, 22(14), 7293. doi: 10.3390/ijms22147293 PMID: 34298915
  24. Pang, X.; Dong, N.; Zheng, Z. Small leucine-rich proteoglycans in skin wound healing. Front. Pharmacol., 2020, 10, 1649. doi: 10.3389/fphar.2019.01649 PMID: 32063855
  25. Naito, Z. Role of the small leucine-rich proteoglycan (SLRP) family in pathological lesions and cancer cell growth. J. Nippon Med. Sch., 2005, 72(3), 137-145. doi: 10.1272/jnms.72.137 PMID: 16046829
  26. Schaefer, L.; Iozzo, R.V. Biological functions of the small leucine-rich proteoglycans: From genetics to signal transduction. J. Biol. Chem., 2008, 283(31), 21305-21309. doi: 10.1074/jbc.R800020200 PMID: 18463092
  27. Neill, T.; Schaefer, L.; Iozzo, R.V. Decorin: A guardian from the matrix. Am. J. Pathol., 2012, 181(2), 380-387. doi: 10.1016/j.ajpath.2012.04.029 PMID: 22735579
  28. Iacob, D.; Cai, J.; Tsonis, M.; Babwah, A.; Chakraborty, C.; Bhattacharjee, R.N.; Lala, P.K. Decorin-mediated inhibition of proliferation and migration of the human trophoblast via different tyrosine kinase receptors. Endocrinology, 2008, 149(12), 6187-6197. doi: 10.1210/en.2008-0780 PMID: 18703624
  29. Nandi, P.; Siddiqui, M.F.; Lala, P.K. Restraint of trophoblast invasion of the uterus by decorin: Role in pre-eclampsia. Am. J. Reprod. Immunol., 2016, 75(3), 351-360. doi: 10.1111/aji.12449 PMID: 26554635
  30. Lala, P.K.; Nandi, P. Mechanisms of trophoblast migration, endometrial angiogenesis in preeclampsia: The role of decorin. Cell Adhes. Migr., 2016, 10(1-2), 111-125. doi: 10.1080/19336918.2015.1106669 PMID: 26745663
  31. Zou, Y.; Yu, X.; Lu, J.; Jiang, Z.; Zuo, Q.; Fan, M.; Huang, S.; Sun, L. Decorin-mediated inhibition of human trophoblast cells proliferation, migration, and invasion and promotion of apoptosis in vitro. BioMed. Res. Int., 2015, 2015, 1-10. doi: 10.1155/2015/201629 PMID: 26357650
  32. Chakravarti, S. Primary structure of human lumican (keratan sulfate proteoglycan) and localization of the gene (LUM) to chromosome 12q21.3-q22. Genomics, 1995, 27(3), 481-488. doi: 10.1006/geno.1995.1080
  33. Chakravarti, S.; Petroll, W.M.; Hassell, J.R.; Jester, J.V.; Lass, J.H.; Paul, J.; Birk, D.E. Corneal opacity in lumican-null mice: Defects in collagen fibril structure and packing in the posterior stroma. Invest. Ophthalmol. Vis. Sci., 2000, 41(11), 3365-3373. PMID: 11006226
  34. Cornuet, P.K.B.; Blochberger, T.C.; Hassell, J.R. Molecular polymorphism of lumican during corneal development. Invest. Ophthalmol. Vis. Sci., 1994, 35(3), 870-877. PMID: 8125750
  35. Chen, L.; Zhang, Y.; Zuo, Y.; Ma, F.; Song, H. Lumican expression in gastric cancer and its association with biological behavior and prognosis. Oncol. Lett., 2017, 14(5), 5235-5240. doi: 10.3892/ol.2017.6842 PMID: 29098025
  36. Liu, C.; Hu, Y.; Wang, Z.; Pan, H.; Ren, Y.; Li, X.; Liu, Z.; Gao, H. The downregulation of placental lumican promotes the progression of preeclampsia. Reprod. Sci., 2021, 28(11), 3147-3154. doi: 10.1007/s43032-021-00660-w PMID: 34231169
  37. Nastase, M.V.; Young, M.F.; Schaefer, L. Biglycan: A multivalent proteoglycan providing structure and signals. J. Histochem. Cytochem., 2012, 60(12), 963-975. doi: 10.1369/0022155412456380 PMID: 22821552
  38. Appunni, S.; Rubens, M.; Ramamoorthy, V.; Anand, V.; Khandelwal, M.; Sharma, A. Biglycan: An emerging small leucine-rich proteoglycan (SLRP) marker and its clinicopathological significance. Mol. Cell. Biochem., 2021, 476(11), 3935-3950. doi: 10.1007/s11010-021-04216-z PMID: 34181183
  39. Gogiel, T.; Galewska, Z.; Romanowicz, L.; Jaworski, S.; Bańkowski, E. Pre-eclampsia-associated alterations in decorin, biglycan and versican of the umbilical cord vein wall. Eur. J. Obstet. Gynecol. Reprod. Biol., 2007, 134(1), 51-56. doi: 10.1016/j.ejogrb.2006.10.003 PMID: 17097211
  40. Roedig, H.; Nastase, M.V.; Frey, H.; Moreth, K.; Zeng-Brouwers, J.; Poluzzi, C.; Hsieh, L.T.H.; Brandts, C.; Fulda, S.; Wygrecka, M.; Schaefer, L. Biglycan is a new high-affinity ligand for CD14 in macrophages. Matrix Biol., 2019, 77, 4-22. doi: 10.1016/j.matbio.2018.05.006 PMID: 29777767
  41. Schaefer, L.; Babelova, A.; Kiss, E.; Hausser, H.J.; Baliova, M.; Krzyzankova, M.; Marsche, G.; Young, M.F.; Mihalik, D.; Götte, M.; Malle, E.; Schaefer, R.M.; Gröne, H.J. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J. Clin. Invest., 2005, 115(8), 2223-2233. doi: 10.1172/JCI23755 PMID: 16025156
  42. Afratis, N.A.; Nikitovic, D.; Multhaupt, H.A.B.; Theocharis, A.D.; Couchman, J.R.; Karamanos, N.K. Syndecans – key regulators of cell signaling and biological functions. FEBS J., 2017, 284(1), 27-41. doi: 10.1111/febs.13940 PMID: 27790852
  43. Shriver, Z.; Capila, I.; Venkataraman, G.; Sasisekharan, R. Heparin and heparan sulfate: Analyzing structure and microheterogeneity. Handb. Exp. Pharmacol., 2012, 207(207), 159-176. doi: 10.1007/978-3-642-23056-1_8 PMID: 22566225
  44. Czarnowski, D. Syndecans in cancer: A review of function, expression, prognostic value, and therapeutic significance. Cancer Treat. Res. Commun., 2021, 27, 100312. doi: 10.1016/j.ctarc.2021.100312
  45. Jokimaa, V.I.S.; Kujari, H.P.; Ekholm, E.M.K.; Inki, P.L.K.; Anttila, L. Placental expression of syndecan 1 is diminished in preeclampsia. Am. J. Obstet. Gynecol., 2000, 183(6), 1495-1498. doi: 10.1067/mob.2000.107320 PMID: 11120517
  46. Yoneda, A.; Couchman, J.R. Regulation of cytoskeletal organization by syndecan transmembrane proteoglycans. Matrix Biol., 2003, 22(1), 25-33. doi: 10.1016/S0945-053X(03)00010-6 PMID: 12714039
  47. Heyer-Chauhan, N.; Ovbude, I.J.; Hills, A.A.; Sullivan, M.H.; Hills, F.A. Placental syndecan-1 and sulphated glycosaminoglycans are decreased in preeclampsia. J. Perinat. Med., 2014, 42(3), 329-338. doi: 10.1515/jpm-2013-0097 PMID: 24222257
  48. Novotny, W.F.; Palmier, M.; Wun, T.C.; Broze, G.J.J., Jr; Miletich, J.P. Purification and properties of heparin-releasable lipoprotein- associated coagulation inhibitor. Blood, 1991, 78(2), 394-400. doi: 10.1182/blood.V78.2.394.394 PMID: 2070077
  49. Elenius, K.; Määttä, A.; Salmivirta, M.; Jalkanen, M. Growth factors induce 3T3 cells to express bFGF-binding syndecan. J. Biol. Chem., 1992, 267(9), 6435-6441. doi: 10.1016/S0021-9258(18)42715-9 PMID: 1556147
  50. Filmus, J.; Capurro, M.; Rast, J. Glypicans. Genome Biol., 2008, 9(5), 224. doi: 10.1186/gb-2008-9-5-224 PMID: 18505598
  51. Khan, S.; Blackburn, M.; Mao, D.L.; Huber, R.; Schlessinger, D.; Fant, M. Glypican-3 (GPC3) expression in human placenta: Localization to the differentiated syncytiotrophoblast. Histol. Histopathol., 2001, 16(1), 71-78. doi: 10.14670/HH-16.71 PMID: 11193214
  52. Neaud, V.; Duplantier, J.G.; Mazzocco, C.; Kisiel, W.; Rosenbaum, J. Thrombin up-regulates tissue factor pathway inhibitor-2 synthesis through a cyclooxygenase-2-dependent, epidermal growth factor receptor-independent mechanism. J. Biol. Chem., 2004, 279(7), 5200-5206. doi: 10.1074/jbc.M306679200 PMID: 14623891
  53. Hohenester, E. Structural biology of laminins. Essays Biochem., 2019, 63(3), 285-295. doi: 10.1042/EBC20180075 PMID: 31092689
  54. Hohenester, E.; Yurchenco, P.D. Laminins in basement membrane assembly. Cell Adhes. Migr., 2013, 7(1), 56-63. doi: 10.4161/cam.21831 PMID: 23076216
  55. Savino, W.; Mendes-da-Cruz, D.A.; Golbert, D.C.F.; Riederer, I.; Cotta-de-Almeida, V. Laminin-mediated interactions in thymocyte migration and development. Front. Immunol., 2015, 6, 579. doi: 10.3389/fimmu.2015.00579 PMID: 26635793
  56. Givant-Horwitz, V.; Davidson, B.; Reich, R. Laminin-induced signaling in tumor cells: the role of the M(r) 67,000 laminin receptor. Cancer Res., 2004, 64(10), 3572-3579. doi: 10.1158/0008-5472.CAN-03-3424 PMID: 15150114
  57. Ma, K.; Jin, H.; Hu, R.; Xiong, Y.; Zhou, S.; Ting, P.; Cheng, Y.; Yang, Y.; Yang, P.; Li, X. A proteomic analysis of placental trophoblastic cells in preeclampsia-eclampsia. Cell Biochem. Biophys., 2014, 69(2), 247-258. doi: 10.1007/s12013-013-9792-4 PMID: 24343450
  58. Miner, J.H.; Cunningham, J.; Sanes, J.R. Roles for laminin in embryogenesis: Exencephaly, syndactyly, and placentopathy in mice lacking the laminin alpha5 chain. J. Cell Biol., 1998, 143(6), 1713-1723. doi: 10.1083/jcb.143.6.1713 PMID: 9852162
  59. Zhang, X.M.; Xiong, X.; Tong, C.; Li, Q.; Huang, S.; Li, Q.S.; Liu, Y.M.; Li, H.Y.; Baker, P.; Shan, N.; Qi, H.B. Down-regulation of laminin (LN)- α5 is associated with preeclampsia and impairs trophoblast cell viability and invasiveness through PI3K signaling pathway. Cell. Physiol. Biochem., 2018, 51(5), 2030-2040. doi: 10.1159/000495822 PMID: 30522103
  60. Ji, Y.; Zhou, L.; Wang, G.; Qiao, Y.; Tian, Y.; Feng, Y. Role of LAMA4 gene in regulating extravillous trophoblasts in pathogenesis of preeclampsia. Med. Sci. Monit., 2019, 25, 9630-9636. doi: 10.12659/MSM.917402 PMID: 31842202
  61. Hynes, R. Interactions of Fibronectins; Springer-Verlag: New York, 1990, 28, pp. (11)1561-1567. doi: 10.17219/acem/104531
  62. Speziale, P.; Arciola, C.R.; Pietrocola, G. Fibronectin and its role in human infective diseases. Cells, 2019, 8(12), 1516. doi: 10.3390/cells8121516 PMID: 31779172
  63. Dalton, C.J.; Lemmon, C.A. Fibronectin: Molecular structure, fibrillar structure and mechanochemical signaling. Cells, 2021, 10(9), 2443. doi: 10.3390/cells10092443 PMID: 34572092
  64. Wu, H.; Liu, K.; Zhang, J. Excess fibronectin 1 participates in pathogenesis of pre-eclampsia by promoting apoptosis and autophagy in vascular endothelial cells. Mol. Hum. Reprod., 2021, 27(6), gaab030. doi: 10.1093/molehr/gaab030 PMID: 33881516
  65. Jiang, R.; Wang, T.; Zhou, F.; Yao, Y.; He, J.; Xu, D. Bioinformatics-based identification of miRNA-, lncRNA-, and mRNA-associated ceRNA networks and potential biomarkers for preeclampsia. Medicine, 2020, 99(45), e22985. doi: 10.1097/MD.0000000000022985 PMID: 33157942
  66. Tjoa, M.L.; Oudejans, C.B.M.; Van Vugt, J.M.G.; Blankenstein, M.A.; van Wijk, I.J. Markers for presymptomatic prediction of preeclampsia and intrauterine growth restriction. Hypertens. Pregnancy, 2004, 23(2), 171-189. doi: 10.1081/PRG-120028292 PMID: 15369650
  67. Shi, J.W.; Lai, Z.Z.; Yang, H.L.; Yang, S.L.; Wang, C.J.; Ao, D.; Ruan, L.Y.; Shen, H.H.; Zhou, W.J.; Mei, J.; Fu, Q.; Li, M.Q. Collagen at the maternal-fetal interface in human pregnancy. Int. J. Biol. Sci., 2020, 16(12), 2220-2234. doi: 10.7150/ijbs.45586 PMID: 32549767
  68. Heino, J. The collagen family members as cell adhesion proteins. BioEssays, 2007, 29(10), 1001-1010. doi: 10.1002/bies.20636 PMID: 17876790
  69. Xu, P.; W, Y.; Piao, Y.; Bai, S.; Xiao, Z.; Jia, Y.; Luo, S; Zhuang, L. Effects of matrix proteins on the expression of matrix metalloproteinase-2, -9, and -14 and tissue inhibitors of metalloproteinases in human cytotrophoblast cells during the first trimester. Biol. Reprod., 2001, 65(1), 240-246.
  70. Xu, X.H.; Jia, Y.; Zhou, X.; Xie, D.; Huang, X.; Jia, L.; Zhou, Q.; Zheng, Q.; Zhou, X.; Wang, K.; Jin, L.P. Downregulation of lysyl oxidase and lysyl oxidase-like protein 2 suppressed the migration and invasion of trophoblasts by activating the TGF-β/collagen pathway in preeclampsia. Exp. Mol. Med., 2019, 51(2), 1-12. doi: 10.1038/s12276-019-0211-9 PMID: 30804321
  71. Feng, Y.; Chen, X.; Wang, H.; Chen, X.; Lan, Z.; Li, P.; Cao, Y.; Liu, M.; Lv, J.; Chen, Y.; Wang, Y.; Sheng, C.; Huang, Y.; Zhong, M.; Wang, Z.; Yue, X.; Huang, L.; Collagen, I. Collagen I induces preeclampsia-like symptoms by suppressing proliferation and invasion of trophoblasts. Front. Endocrinol., 2021, 12, 664766. doi: 10.3389/fendo.2021.664766 PMID: 34421817
  72. Mousa, A.A.; Cappello, R.E.; Estrada-Gutierrez, G.; Shukla, J.; Romero, R.; Strauss, J.F., III; Walsh, S.W. Preeclampsia is associated with alterations in DNA methylation of genes involved in collagen metabolism. Am. J. Pathol., 2012, 181(4), 1455-1463. doi: 10.1016/j.ajpath.2012.06.019 PMID: 22863954
  73. Abatangelo, G.; Vindigni, V.; Avruscio, G.; Pandis, L.; Brun, P. Hyaluronic Acid: Redefining its role. Cells, 2020, 9(7), 1743. doi: 10.3390/cells9071743 PMID: 32708202
  74. Heldin, P.; Basu, K.; Olofsson, B.; Porsch, H.; Kozlova, I.; Kahata, K. Deregulation of hyaluronan synthesis, degradation and binding promotes breast cancer. J. Biochem., 2013, 154(5), 395-408. doi: 10.1093/jb/mvt085 PMID: 24092768
  75. Castellucci, M.; Kosanke, G.; Verdenelli, F.; Huppertz, B.; Kaufmann, P. Villous sprouting: Fundamental mechanisms of human placental development. Hum. Reprod. Update, 2000, 6(5), 485-494. doi: 10.1093/humupd/6.5.485 PMID: 11045879
  76. San Martin, S.; Soto-Suazo, M.; Zorn, T.M.T. Distribution of versican and hyaluronan in the mouse uterus during decidualization. Braz. J. Med. Biol. Res., 2003, 36(8), 1067-1071. doi: 10.1590/S0100-879X2003000800013 PMID: 12886461
  77. Uzun, H.; Konukoglu, D.; Albayrak, M.; Benian, A.; Madazli, R.; Aydin, S.; Gelisgen, R.; Uludag, S. Increased maternal serum and cord blood fibronectin concentrations in preeclampsia are associated with higher placental hyaluronic acid and hydroxyproline content. Hypertens. Pregnancy, 2010, 29(2), 153-162. doi: 10.3109/10641950902968619 PMID: 20367505
  78. Liang, J.; Jiang, D.; Griffith, J.; Yu, S.; Fan, J.; Zhao, X.; Bucala, R.; Noble, P.W. CD44 is a negative regulator of acute pulmonary inflammation and lipopolysaccharide-TLR signaling in mouse macrophages. J. Immunol., 2007, 178(4), 2469-2475. doi: 10.4049/jimmunol.178.4.2469 PMID: 17277154
  79. Stefańska, K.; Zieliński, M.; Jankowiak, M.; Zamkowska, D.; Sakowska, J.; Adamski, P.; Jassem-Bobowicz, J.; Piekarska, K.; Leszczyńska, K.; Świątkowska-Stodulska, R.; Kwiatkowski, S.; Preis, K.; Trzonkowski, P.; Marek-Trzonkowska, N. Cytokine imprint in preeclampsia. Front. Immunol., 2021, 12, 667841. doi: 10.3389/fimmu.2021.667841 PMID: 34248946
  80. Sternlicht, M.D.; Werb, Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell Dev. Biol., 2001, 17(1), 463-516. doi: 10.1146/annurev.cellbio.17.1.463 PMID: 11687497
  81. Klein, T.; Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids, 2011, 41(2), 271-290. doi: 10.1007/s00726-010-0689-x PMID: 20640864
  82. Newby, A.C. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev., 2005, 85(1), 1-31. doi: 10.1152/physrev.00048.2003 PMID: 15618476
  83. Sahay, A.S.; Jadhav, A.T.; Sundrani, D.P.; Wagh, G.N.; Mehendale, S.S.; Joshi, S.R. Matrix metalloproteinases-2 (MMP-2) and matrix metalloproteinases-9 (MMP-9) are differentially expressed in different regions of normal and preeclampsia placentae. J. Cell. Biochem., 2018, 119(8), 6657-6664. doi: 10.1002/jcb.26849 PMID: 29665148
  84. Suo, M.; Sun, Y.; Yang, H.; Ji, J.; He, Y.; Dong, L.; Wang, Y.; Zhang, Y.; Zhang, Y.; Hao, M. miR-183-5p suppressed the invasion and migration of HTR-8/SVneo trophoblast cells partly via targeting MMP-9 in preeclampsia. Biosci. Rep., 2020, 40(6), BSR20192575. doi: 10.1042/BSR20192575 PMID: 32342983
  85. Timokhina, E.; Strizhakov, A.; Ibragimova, S.; Gitel, E.; Ignatko, I.; Belousova, V.; Zafiridi, N. Matrix metalloproteinases MMP-2 and MMP-9 occupy a new role in severe preeclampsia. J. Pregnancy, 2020, 2020(1-2), 1-7. doi: 10.1155/2020/8369645 PMID: 33381317
  86. Ng, E.K.O.; Leung, T.N.; Tsui, N.B.Y.; Lau, T.K.; Panesar, N.S.; Chiu, R.W.K.; Lo, Y.M.D. The concentration of circulating corticotropin-releasing hormone mRNA in maternal plasma is increased in preeclampsia. Clin. Chem., 2003, 49(5), 727-731. doi: 10.1373/49.5.727 PMID: 12709362
  87. Nishikawa, S.; Miyamoto, A.; Yamamoto, H.; Ohshika, H.; Kudo, R. The relationship between serum nitrate and endothelin-1 concentrations in preeclampsia. Life Sci., 2000, 67(12), 1447-1454. doi: 10.1016/S0024-3205(00)00736-0 PMID: 10983841
  88. Cohen, M.; Ribaux, P.; Epiney, M.; Irion, O. Expression of metalloproteinases 1, 2, 7, 9, and 12 in human cytotrophoblastic cells from normal and preeclamptic placentas. Neuroendocrinol. Lett., 2012, 33(4), 406-411. PMID: 22936257
  89. Page-McCaw, A.; Ewald, A.J.; Werb, Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol., 2007, 8(3), 221-233. doi: 10.1038/nrm2125 PMID: 17318226
  90. Khan, G.A.; Girish, G.V.; Lala, N.; Di Guglielmo, G.M.; Lala, P.K. Decorin is a novel VEGFR-2-binding antagonist for the human extravillous trophoblast. Mol. Endocrinol., 2011, 25(8), 1431-1443. doi: 10.1210/me.2010-0426 PMID: 21659473
  91. Siddiqui, M. F.; Nandi, P.; Girish, G. V.; Nygard, K.; Eastabrook, G.; de Vrijer, B.; Han, V. K.; Lala, P. K. Decorin over-expression by decidual cells in preeclampsia: A potential blood biomarker. Am J Obstet Gynecol, 2016, 215(3), 361 e1-361 e6. doi: 10.1016/j.ajog.2016.03.020

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers