A Review of the Leishmanicidal Properties of Lectins


Цитировать

Полный текст

Аннотация

Lectins are proteins widely distributed among plants, animals and microorganisms that have the ability to recognize and interact with specific carbohydrates. They have varied biological activities, such as the inhibition of the progression of infections caused by fungi, bacteria, viruses and protozoa, which is related to the interaction of these proteins with the carbohydrates present in the cell walls of these microorganisms. Leishmaniasis are a group of endemic infectious diseases caused by protozoa of the genus Leishmania. In vitro and in vivo tests with promastigotes and amastigotes of Leishmania demonstrated that lectins have the ability to interact with glycoconjugates present on the cell surface of the parasite, it prevents their development through various mechanisms of action, such as the production of ROS and alteration of membrane integrity, and can also interact with defense cells present in the human body, thus showing that these molecules can be considered alternative pharmacological targets for the treatment of leishmaniasis. The objective of the present work is to carry out a bibliographic review on lectins with leishmanicidal activity, emphasizing the advances and perspectives of research in this theme. Through the analysis of the selected studies, we were able to conclude that lectins have great potential for inhibiting the development of leishmaniasis. However, there are still few studies on this subject.

Об авторах

Yasmim Grangeiro

Departamento de Bioquímica, Universidade Federal do Ceará

Email: info@benthamscience.net

Ana Santos

Faculdade de Medicina, Universidade Federal do Cariri

Email: info@benthamscience.net

Flávia Barbosa

Faculdade de Medicina, Universidade Federal do Cariri

Email: info@benthamscience.net

Renato Roma

Departamento de Bioquímica, Universidade Federal do Ceará

Email: info@benthamscience.net

Racquel Souza

Faculdade de Medicina, Universidade Federal do Cariri

Email: info@benthamscience.net

Cláudio Silva

Faculdade de Medicina, Universidade Federal do Cariri

Email: info@benthamscience.net

Claudener Teixeira

Centro de Ciências Agrárias e da biodiversidade, Universidade Federal do Cariri

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Peumans, W.J.; Van Damme, E. Lectins as plant defense proteins. Plant Physiol., 1995, 109(2), 347-352. doi: 10.1104/pp.109.2.347 PMID: 7480335
  2. Povineli, K.L.; Finardi Filho, F. The multiple functions of plant lectins. Nutrire, 2002, 24, 135-156.
  3. Cavada, B.S.; Santos, C.F.; Grangeiro, T.B.; Nunes, E.P.; Sales, P.V.P.; Ramos, R.L.; De Sousa, F.A.M.; Crisostomo, C.V.; Calvete, J.J. Purification and characterization of a lectin from seeds of Vatairea macrocarpa duke. Phytochemistry, 1998, 49(3), 675-680. doi: 10.1016/S0031-9422(98)00144-7 PMID: 9779593
  4. Drickamer, K. Two distinct classes of carbohydrate-recognition domains in animal lectins. J. Biol. Chem., 1988, 263(20), 9557-9560. doi: 10.1016/S0021-9258(19)81549-1 PMID: 3290208
  5. Singh, R.S.; Walia, A.K.; Kennedy, J.F. Structural aspects and biomedical applications of microfungal lectins. Int. J. Biol. Macromol., 2019, 134, 1097-1107. doi: 10.1016/j.ijbiomac.2019.05.093 PMID: 31103591
  6. Saha, R.K.; Acharya, S.; Jamiruddin, M.; Roy, P.; Islam, M.S.; Shovon, S.S.H. Antimicrobial effects of a crude plant lectin isolated from the stem of Tinospora tomentosa. J. phytopharm., 2014, 3(1), 44-51. doi: 10.31254/phyto.2014.3107
  7. Auth, J.; Fröba, M.; Große, M.; Rauch, P.; Ruetalo, N.; Schindler, M.; Morokutti-Kurz, M.; Graf, P.; Dolischka, A.; Prieschl-Grassauer, E.; Setz, C.; Schubert, U. Lectin from Triticum vulgaris (WGA) inhibits infection with SARS-CoV-2 and its variants of concern alpha and beta. Int. J. Mol. Sci., 2021, 22(19), 10205. doi: 10.3390/ijms221910205 PMID: 34638545
  8. Azevedo, I.M.F.; Silva, R.B.D.; Pinheiro, A.D.A.; Carneiro, R.F.; Nascimento Neto, L.G.D. Evaluation of the antitumor activity of the lectin isolated from the marine sponge Chondrilla caribensis. Rev. Multidiscip. Edu. Envir, 2021, 2(2), 42. doi: 10.51189/rema/1270
  9. Dias, L.P.; Santos, A.L.E.; Araújo, N.M.S.; Silva, R.R.S.; Santos, M.H.C.; Roma, R.R.; Rocha, B.A.M.; Oliveira, J.T.A.; Teixeira, C.S. Machaerium acutifolium lectin alters membrane structure and induces ROS production in Candida parapsilosis. Int. J. Biol. Macromol., 2020, 163, 19-25. doi: 10.1016/j.ijbiomac.2020.06.236 PMID: 32599250
  10. Santos, A.L.E.; Leite, G.O.; Carneiro, R.F.; Roma, R.R.; Santos, V.F.; Santos, M.H.C.; Pereira, R.O.; Silva, R.C.; Nagano, C.S.; Sampaio, A.H.; Rocha, B.A.M.; Delatorre, P.; Campos, A.R.; Teixeira, C.S. Purification and biophysical characterization of a mannose/N-acetyl-d-glucosamine-specific lectin from Machaerium acutifolium and its effect on inhibition of orofacial pain via TRPV1 receptor. Arch. Biochem. Biophys., 2019, 664, 149-156. doi: 10.1016/j.abb.2019.02.009 PMID: 30772259
  11. Santos, V.F.; Araújo, A.C.J.; Silva, A.L.F.; Almeida, D.V.; Freitas, P.R.; Santos, A.L.E.; Rocha, B.A.M.; Garcia, W.; Leme, A.M.; Bondan, E.; Borges, F.T.; Cutrim, B.S.; Silva, L.C.N.; Coutinho, H.D.M.; Teixeira, C.S. Dioclea violacea lectin modulates the gentamicin activity against multi-resistant strains and induces nefroprotection during antibiotic exposure. Int. J. Biol. Macromol., 2020, 146, 841-852. doi: 10.1016/j.ijbiomac.2019.09.207 PMID: 31726163
  12. Sousa, A.R.O.; Andrade, F.R.N.; Chaves, R.P.; Sousa, B.L.; Lima, D.B.; Souza, R.O.S.; da Silva, C.G.L.; Teixeira, C.S.; Sampaio, A.H.; Nagano, C.S.; Carneiro, R.F. Structural characterization of a galectin isolated from the marine sponge Chondrilla caribensis with leishmanicidal potential. Biochim. Biophys. Acta, Gen. Subj., 2021, 1865(12), 129992. doi: 10.1016/j.bbagen.2021.129992 PMID: 34508835
  13. Aranda-Souza, M..; de Lorena, V.M.B.; Dos Santos Correia, M.T.; de Figueiredo, R.C.B.Q. In vitro effect of Bothrops leucurus lectin (BLL) against Leishmania amazonensis and Leishmania braziliensis infection. Int. J. Biol. Macromol., , 2018, 120(Pt A), 431-439. doi: 10.1016/j.ijbiomac.2018.08.064
  14. Carneiro, R.F.; Aguiar, E.S.; Santos, V.F.; Santos, A.L.E.; Santos, M.H.C.; Roma, R.R.; Silva, R.R.S.; Leal, M.L.M.B.; Silva, L.T.; Rocha, B.A.M.; Silva, C.G.L.; Nagano, C.S.; Sampaio, A.H.; Souza, R.O.S.; Teixeira, C.S. Elucidation of the primary structure and molecular modeling of Parkia pendula lectin and in vitro evaluation of the leishmanicidal activity. Process Biochem., 2021, 101, 1-10. doi: 10.1016/j.procbio.2020.11.004
  15. Thomazelli, A.P.F.S.; Tomiotto-Pellissier, F.; Miranda-Sapla, M.M.; da Silva, S.S.; Alvarenga, D.S.; Panis, C.; Cataneo, A.H.D.; Bordignon, J.; Silveira, G.F.; Yamauchi, L.M.; de Sá, J.P.S.R.; Felipe, I.; Pavanelli, W.R.; Conchon-Costa, I. Concanavalin-A displays leishmanicidal activity by inducing ROS production in human peripheral blood mononuclear cells. Immunopharmacol. Immunotoxicol., 2018, 40(5), 387-392. doi: 10.1080/08923973.2018.1510960 PMID: 30183425
  16. Alemayehu, B.; Alemayehu, M. Leishmaniasis: A review on parasite, vector and reservoir host J. Health Sci, 2017, 11 doi: 10.21767/1791-809X.1000519
  17. Brazil Health Surveillance Guide, 1st ed; Ministry of Health: Brasilia, 2016.
  18. Brazil Ministry of Health from A to Z. 2022. Available at: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/l Accessed on: January 6, 2023.
  19. Lainson, R.; Shaw, J.J. Evolution, classification and geographical distribution, 1987, , 1-120. Available from: https://patua.iec.gov-.br/handle/iec/2715
  20. Tabbabi, A. Review of leishmaniasis in the Middle East and North Africa. Afr. Health Sci., 2019, 19(1), 1329-1337. doi: 10.4314/ahs.v19i1.4 PMID: 31148958
  21. de Freitas, R.C.; Marcili, A. Skin changes secondary to Leishmania sp. infection: Literature review. BJD, 2020, 6, 19328-19346. doi: 10.34117/bjdv6n4-195
  22. Wyrepkowski, C.D.C.; Paz, A.C.; Jensen, B.B.; Franco, A.M.R. Pharmacological aspects of drug therapy used for cutaneous leishmaniasis: A literature review. REAS, 2020, 12, e3352-e3352. doi: 10.25248/reas.e3352.2020
  23. Assis, R.R.; Ibraim, I.C.; Noronha, F.S.; Turco, S.J.; Soares, R.P. Glycoinositolphospholipids from Leishmania braziliensis and L. infantum: modulation of innate immune system and variations in carbohydrate structure. PLoS Negl. Trop. Dis., 2012, 6(2), e1543. doi: 10.1371/journal.pntd.0001543 PMID: 22389743
  24. Pereira, L.O.R.; Sousa, C.S.; Ramos, H.C.P.; Torres-Santos, E.C.; Pinheiro, L.S.; Alves, M.R.; Cuervo, P.; Romero, G.A.S.; Boité, M.C.; Porrozzi, R.; Cupolillo, E. Insights from Leishmania (Viannia) guyanensis in vitro behavior and intercellular communication. Parasit. Vectors, 2021, 14(1), 556. doi: 10.1186/s13071-021-05057-x PMID: 34711290
  25. Galvis-Ovallos, F.; Silva, R.A.; Silva, V.G.D.; Sabio, P.B.; Galati, E.A.B. In vitro insights of Leishmania (Viannia) species related to their outcomes and virulence in American tegumentary leishmaniasis. Int. J. Health Sci., 2020, 1(1), 1-15. doi: 10.22533/at.ed.1592127091
  26. Benedetti, M.S.G.; Pezente, L.G. Epidemiological aspects of visceral leishmaniasis in the extreme North of Brazil. BJHR, 2020, 3, 14203-14226. doi: 10.34119/bjhrv3n5-224
  27. Tanure, A.; Peixoto, J.C.; Afonso, M.M.S.; Duarte, R.; Pinheiro, A.C.; Coelho, S.V.B.; Barata, R.A. Identification of sandflies (Diptera: Psychodidae: Phlebotominae) blood meals in an endemic leishmaniasis area in brazil. Rev. Inst. Med. Trop. São Paulo, 2015, 57(4), 321-324. doi: 10.1590/S0036-46652015000400008 PMID: 26422156
  28. Anversa, L.; Tiburcio, M.G.S.; Richini-Pereira, V.B.; Ramirez, L.E. Human leishmaniasis in Brazil: A general review. Rev. Assoc. Med. Bras., 2018, 64(3), 281-289. doi: 10.1590/1806-9282.64.03.281 PMID: 29641786
  29. Brito, G.S.; Aguiar, J.V.C.; de Sousa de Almeida, M.; Silva Ponte, I.; Costa Neta, B.M.; Silva, F.S. Influence of moonlight on male mating aggregations of nyssomyia whitmani, a vector of american cutaneous leishmaniasis in Brazil. J. Med. Entomol., 2020, 57(5), 1648-1652. doi: 10.1093/jme/tjaa048 PMID: 32270870
  30. Killick-Kendrick, R. Guide to the identification and geographic distribution of Lutzomyia sand flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). D.G. Young, M.A. Duncan, Memoirs of the American entomological institute, 54. Gainesville, Florida, USA: Associated Publishers. Trans. R. Soc. Trop. Med. Hyg., 1994, 89(1), 125. doi: 10.1016/0035-9203(95)90687-8
  31. Butenko, A.; Kostygov, A.Y.; Sádlová, J.; Kleschenko, Y.; Bečvář, T.; Podešvová, L.; Macedo, D.H.; Žihala, D.; Lukeš, J.; Bates, P.A.; Volf, P.; Opperdoes, F.R.; Yurchenko, V. Comparative genomics of Leishmania (Mundinia). BMC Genomics, 2019, 20(1), 726. doi: 10.1186/s12864-019-6126-y PMID: 31601168
  32. Aguiar, F.P.; Rodrigues, K.R. Visceral leishmaniasis in Brazil: Review article RUC, 2020, 19(1), 192-204. Retrieved from: https://www.periodicos.unimontes.br/index.php/unicientifica/article/view/2119
  33. Sacks, D.; Kamhawi, S. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu. Rev. Microbiol., 2001, 55(1), 453-483. doi: 10.1146/annurev.micro.55.1.453 PMID: 11544364
  34. Holanda, V.N.; da Silva, W.V.; do Nascimento, P.H.; Oliveira, R.N.; Lima, V.L.M.R.; de Figueiredo, C.B.Q. Challenges and perspectives in the treatment of tegumentary leishmaniasis: Literature review. Rev. Interfaces, Health, Humanities and Technol., 2018, 6, 140-157. doi: 10.16891/619
  35. Guimarães, A.C.; Nogueira, P.M.; Silva, S.O.; Sadlova, J.; Pruzinova, K.; Hlavacova, J.; Melo, M.N.; Soares, R.P. Lower galactosylation levels of the Lipophosphoglycan from Leishmania (Leishmania) major-like strains affect interaction with Phlebotomus papatasi and Lutzomyia longipalpis. Mem. Inst. Oswaldo Cruz, 2018, 113(5), e170333. doi: 10.1590/0074-02760170333 PMID: 29513819
  36. Turco, S.J.; Späth, G.F.; Beverley, S.M. Is lipophosphoglycan a virulence factor? A surprising diversity between Leishmania species. Trends Parasitol., 2001, 17(5), 223-226. doi: 10.1016/S1471-4922(01)01895-5 PMID: 11323305
  37. Male, D. Immunology, 8. Ed; Elsevier Publisher: Brazil, 2014.
  38. Barbosa, J.M.; Fontes, R.M.; Frutuoso, M.S.; Praciano, C.C.; Oliveira, L.S.M.; Carneiro, T.R.; Pompeu, M.M.L. Evaluation of Dioclea violacea lectin-induced agglutination (DVL) to infective forms of Leishmania amazonensis XXII Brazilian Congress of Parasitology, São Paulo, J Trop Pathol, 2011, 40
  39. Cabezas, Y.; Legentil, L.; Robert-Gangneux, F.; Daligault, F.; Belaz, S.; Nugier-Chauvin, C.; Tranchimand, S.; Tellier, C.; Gangneux, J.P.; Ferrières, V. Leishmania cell wall as a potent target for antiparasitic drugs. A focus on the glycoconjugates. Org. Biomol. Chem., 2015, 13(31), 8393-8404. doi: 10.1039/C5OB00563A PMID: 26130402
  40. Turco, S.J. Trypanosomatid surface and secreted carbohydrates. In: Molecular Medical Parasitology; Academic Press, 2003; 10, pp. 225-240. doi: 10.1016/B978-012473346-6/50013-2
  41. de Freitas, J.C.; Pinheiro, D.C. Cellular and molecular aspects of immune response to Leishmania spp Rev. port. science vet., , 2010, 109, 11-20.
  42. Lázaro-Souza, M.; Matte, C.; Lima, J.B.; Arango Duque, G.; Quintela-Carvalho, G.; de Carvalho Vivarini, Á.; Moura-Pontes, S.; Figueira, C.P.; Jesus-Santos, F.H.; Gazos Lopes, U.; Farias, L.P.; Araújo-Santos, T.; Descoteaux, A.; Borges, V.M. Leishmania infantum Lipophosphoglycan-deficient mutants: A tool to study host cell-parasite interplay. Front. Microbiol., 2018, 9, 626. doi: 10.3389/fmicb.2018.00626 PMID: 29675001
  43. Valente, M.; Castillo-Acosta, V.M.; Vidal, A.E.; González-Pacanowska, D. Overview of the role of kinetoplastid surface carbohydrates in infection and host cell invasion: Prospects for therapeutic intervention. Parasitology, 2019, 146(14), 1743-1754. doi: 10.1017/S0031182019001355 PMID: 31603063
  44. de Saldanha, R.R.; Martins-Papa, M.C.; Sampaio, R.N.R.; Muniz-Junqueira, M.I. Meglumine antimonate treatment enhances phagocytosis and TNF-α production by monocytes in human cutaneous leishmaniasis. Trans. R. Soc. Trop. Med. Hyg., 2012, 106(10), 596-603. doi: 10.1016/j.trstmh.2012.07.001 PMID: 22884926
  45. Caetano, D.C.D.S.; Costa, C.O.; Diniz, S.N.; dos Santos, M.R.M.; Marquez, A.S.; Pereira, R.M.S. Tegumentary leishmaniasis in the state of Mato Grosso: Sociodemographic and health characteristics associated with adverse laboratory and electrocardiographic reactions. Ens. Cienc. Biol. Agrar. Health., 2020, 24, 234-241. doi: 10.17921/1415-6938.2020v24n3p234-241
  46. de Melo, C.M.L.; de Castro, M.C.A.B.; de Oliveira, A.P.; Gomes, F.O.S.; Pereira, V.R.A.; Correia, M.T.S.; Coelho, L.C.B.B.; Paiva, P.M.G. Immunomodulatory response of Cramoll 1,4 lectin on experimental lymphocytes. Phytother. Res., 2010, 24(11), 1631-1636. doi: 10.1002/ptr.3156 PMID: 21031620
  47. Grinnage-Pulley, T.L.; Kabotso, D.E.K.; Rintelmann, C.L.; Roychoudhury, R.; Schaut, R.G.; Toepp, A.J.; Gibson-Corley, K.N.; Parrish, M.; Pohl, N.L.B.; Petersen, C.A. Leishmania-derived trimannose modulates the inflammatory response to significantly reduce leishmania major-induced lesions. Infect. Immun., 2018, 86(1), e00672-17. doi: 10.1128/IAI.00672-17 PMID: 29061708
  48. Batista, R.; De Jesus Silva Júnior, A.; De Oliveira, A. Plant-derived antimalarial agents: New leads and efficient phytomedicines. Part II. Non-alkaloidal natural products. Molecules, 2009, 14(8), 3037-3072. doi: 10.3390/molecules14083037 PMID: 19701144
  49. Ribeiro, J.B.P.; Miranda-Vilela, A.L.; Amorim, A.A.S.; Garcia, R.D.; Moreira, J.R.; Gomes, C.M.; Takano, G.H.S.; de Oliveira, G.M.F.; Lima, A.V.; da Silva, I.C.R.; Sampaio, R.N.R. Study of the efficacy of N-methyl glucamine antimoniate (SbV) associated with photodynamic therapy using liposomal chloroaluminium phthalocyanine in the treatment of cutaneous leishmaniasis caused by Leishmania (L.) amazonensis in C57BL6 mice. Photodiagn. Photodyn. Ther., 2019, 26, 261-269. doi: 10.1016/j.pdpdt.2019.04.004 PMID: 30951865
  50. Stillmark, H. Ricin, a toxic enzyme from seeds of Ricinus communis L. and some other Euphorbiaceae. 1888.
  51. Tsaneva, M.; Van Damme, E.J.M. 130 years of plant lectin research. Glycoconj. J., 2020, 37(5), 533-551. doi: 10.1007/s10719-020-09942-y PMID: 32860551
  52. Battison, A.L.; Summerfield, R.L. Isolation and partial characterisation of four novel plasma lectins from the American lobster Homarus americanus. Dev. Comp. Immunol., 2009, 33(2), 198-204. doi: 10.1016/j.dci.2008.08.007 PMID: 18793666
  53. Moura, R.B.; Pereira Júnior, F.N.; Santos, G.F.A.; Rodrigues, A.R.S. Importance of lectins in virology - An integrative review. Res. Soc. Dev, 2020, 9(11), e46491110083. doi: 10.33448/rsd-v9i11.10083
  54. Nunes, E.S.; de Souza, M.A.A.; Vaz, A.F.M.; Santana, G.M.S.; Gomes, F.S.; Coelho, L.C.B.B.; Paiva, P.M.G.; da Silva, R.M.L.; Silva-Lucca, R.A.; Oliva, M.L.V.; Guarnieri, M.C.; Correia, M.T.S. Purification of a lectin with antibacterial activity from Bothrops leucurus snake venom. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2011, 159(1), 57-63. doi: 10.1016/j.cbpb.2011.02.001 PMID: 21334449
  55. Komath, S.S.; Kavitha, M.; Swamy, M.J. Beyond carbohydrate binding: New directions in plant lectin research. Org. Biomol. Chem., 2006, 4(6), 973-988. doi: 10.1039/b515446d PMID: 16525538
  56. Sivaji, N.; Suguna, K.; Surolia, A.; Vijayan, M. Structural biology of plant lectins and macromolecular crystallography in India. Curr. Sci., 2019, 116(9), 1490-1505. doi: 10.18520/cs/v116/i9/1490-1505
  57. Bezerra, E.H.S.; Rocha, B.A.M.; Nagano, C.S.; Bezerra, G.A.; Moura, T.R.; Bezerra, M.J.B.; Benevides, R.G.; Sampaio, A.H.; Assreuy, A.M.S.; Delatorre, P.; Cavada, B.S. Structural analysis of ConBr reveals molecular correlation between the carbohydrate recognition domain and endothelial NO synthase activation. Biochem. Biophys. Res. Commun., 2011, 408(4), 566-570. doi: 10.1016/j.bbrc.2011.04.061 PMID: 21530490
  58. Delatorre, P.; Rocha, B.A.M.; Gadelha, C.A.A.; Santi-Gadelha, T.; Cajazeiras, J.B.; Souza, E.P.; Nascimento, K.S.; Freire, V.N.; Sampaio, A.H.; Azevedo, W.F., Jr; Cavada, B.S. Crystal structure of a lectin from Canavalia maritima (ConM) in complex with trehalose and maltose reveals relevant mutation in ConA-like lectins. J. Struct. Biol., 2006, 154(3), 280-286. doi: 10.1016/j.jsb.2006.03.011 PMID: 16677825
  59. Souza Teixeira, C.; Colares da Silva, H.; Rocha de Moura, T.; Pereira-Júnior, F.N.; Santiago do Nascimento, K.; Shiniti Nagano, C.; Holanda Sampaio, A.; Delatorre, P.; Matias Rocha, B.A.; Sousa Cavada, B. Crystal structure of the lectin of Camptosema pedicellatum: implications of a conservative substitution at the hydrophobic subsite. J. Biochem., 2012, 152(1), 87-98. doi: 10.1093/jb/mvs047 PMID: 22554687
  60. Sharon, N.; Lis, H. History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology, 2004, 14(11), 53R-62R. doi: 10.1093/glycob/cwh122 PMID: 15229195
  61. Hashim, O.H.; Jayapalan, J.J.; Lee, C.S. Lectins: an effective tool for screening of potential cancer biomarkers. PeerJ, 2017, 5, e3784. doi: 10.7717/peerj.3784 PMID: 28894650
  62. Martínez-Carmona, M.; Lozano, D.; Colilla, M.; Vallet-Regí, M. Lectin-conjugated pH-responsive mesoporous silica nanoparticles for targeted bone cancer treatment. Acta Biomater., 2018, 65, 393-404. doi: 10.1016/j.actbio.2017.11.007 PMID: 29127069
  63. Van Damme, E.; Peumans, W.J. Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plant Sci., 1998, 17(6), 575-692. doi: 10.1016/S0735-2689(98)00365-7
  64. Coelho, L.C.B.B.; Silva, P.M.S.; Lima, V.L.M.; Pontual, E.V.; Paiva, P.M.G.; Napoleão, T.H.; Correia, M.T.S. Lectins, interconnecting proteins with biotechnological/pharmacological and therapeutic applications. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-22. doi: 10.1155/2017/1594074 PMID: 28367220
  65. Welter, B.H.; Walters, H.A.; Temesvari, L.A. Reduced expression of a rhomboid protease, EhROM1, correlates with changes in the submembrane distribution and size of the Gal/GalNAc lectin subunits in the human protozoan parasite, Entamoeba histolytica. PLoS One. , 2020, 15(3), e0219870. doi: 10.1371/journal.pone.0219870
  66. Lagarda-Diaz, I.; Guzman-Partida, A.; Vazquez-Moreno, L. Legume lectins: Proteins with diverse applications. Int. J. Mol. Sci., 2017, 18(6), 1242. doi: 10.3390/ijms18061242 PMID: 28604616
  67. Van Breedam, W.; Pöhlmann, S.; Favoreel, H.W.; de Groot, R.J.; Nauwynck, H.J. Bitter-sweet symphony: Glycan–lectin interactions in virus biology. FEMS Microbiol. Rev., 2014, 38(4), 598-632. doi: 10.1111/1574-6976.12052 PMID: 24188132
  68. Lis, H.; Sharon, N. Lectins: Carbohydrate-specific proteins that mediate cellular recognition. Chem. Rev., 1998, 98(2), 637-674. doi: 10.1021/cr940413g PMID: 11848911
  69. Singh, R.S.; Kaur, H.P.; Singh, J. Purification and characterization of a mucin specific mycelial lectin from Aspergillus gorakhpurensis: Application for mitogenic and antimicrobial activity. PLoS One, 2014, 9(10), e109265. doi: 10.1371/journal.pone.0109265 PMID: 25286160
  70. Watanabe, Y.; Naganuma, T.; Ogawa, T.; Muramoto, K. Lectins of marine origin and their clinical applications. In: Antitumor Potential and other Emerging Medicinal Properties of Natural Compounds; Springer Netherlands, 2013; pp. 33-54. doi: 10.1007/978-94-007-6214-5_4
  71. Akkouh, O.; Ng, T.; Singh, S.; Yin, C.; Dan, X.; Chan, Y.; Pan, W.; Cheung, R. Lectins with anti-HIV activity: A review. Molecules, 2015, 20(1), 648-668. doi: 10.3390/molecules20010648 PMID: 25569520
  72. Liu, Z.; Zhang, Q.; Peng, H.; Zhang, W. Animal lectins: Potential antitumor therapeutic targets in apoptosis. Appl. Biochem. Biotechnol., 2012, 168(3), 629-637. doi: 10.1007/s12010-012-9805-6 PMID: 22826026
  73. Araújo, T.S.; Teixeira, C.S.; Falcão, M.A.P.; Junior, V.R.P.; Santiago, M.Q.; Benevides, R.G.; Delatorre, P.; Martins, J.L.; Alexandre-Moreira, M.S.; Cavada, B.S.; Campesatto, E.A.; Rocha, B.A.M. Anti-inflammatory and antinociceptive activity of chitin-binding lectin from Canna limbata seeds. Appl. Biochem. Biotechnol., 2013, 171(8), 1944-1955. doi: 10.1007/s12010-013-0470-1 PMID: 24013883
  74. Abrantes, V.E.F.; Matias da Rocha, B.A.; Batista da Nóbrega, R.; Silva-Filho, J.C.; Teixeira, C.S.; Cavada, B.S.; Gadelha, C.A.A.; Ferreira, S.H.; Figueiredo, J.G.; Santi-Gadelha, T.; Delatorre, P. Molecular modeling of lectin-like protein from Acacia farnesiana reveals a possible anti-inflammatory mechanism in Carrageenan-induced inflammation. BioMed Res. Int., 2013, 2013, 1-9. doi: 10.1155/2013/253483 PMID: 24490151
  75. de Oliveira Leite, G.; Santos, S.A.A.R.; dos Santos Silva, R.R.; Teixeira, C.S.; Campos, A.R. Parkia platycephala lectin (PPL) inhibits orofacial nociception responses via TRPV1 modulation. Molecules, 2022, 27(21), 7506. doi: 10.3390/molecules27217506 PMID: 36364332
  76. de Oliveira Leite, G.; Santos, S.A.A.R.; Bezerra, F.M.D.H.; Sena e Silva, F.E.; de Castro Ribeiro, A.D.; Roma, R.R.; Silva, R.R.S.; Santos, M.H.C.; Santos, A.L.E.; Teixeira, C.S.; Campos, A.R. Is the orofacial antinociceptive effect of lectins intrinsically related to their specificity to monosaccharides? Int. J. Biol. Macromol., 2020, 161, 1079-1085. doi: 10.1016/j.ijbiomac.2020.06.132
  77. da Silva, P.M.; da Silva, B.R.; de Oliveira Silva, J.N.; de Moura, M.C.; Soares, T.; Feitosa, A.P.S.; Brayner, F.A.; Alves, L.C.; Paiva, P.M.G.; Damborg, P.; Ingmer, H.; Napoleão, T.H. Punica granatum sarcotesta lectin (PgTeL) has antibacterial activity and synergistic effects with antibiotics against β-lactamase-producing Escherichia coli. Int. J. Biol. Macromol., 2019, 135, 931-939. doi: 10.1016/j.ijbiomac.2019.06.011 PMID: 31170488
  78. Batista, K.L.R.; Silva, C.R.; Santos, V.F.; Silva, R.C.; Roma, R.R.; Santos, A.L.E.; Pereira, R.O.; Delatorre, P.; Rocha, B.A.M.; Soares, A.M.S.; Costa-Júnior, L.M.; Teixeira, C.S. Structural analysis and anthelmintic activity of Canavalia brasiliensis lectin reveal molecular correlation between the carbohydrate recognition domain and glycans of Haemonchus contortus. Mol. Biochem. Parasitol., 2018, 225, 67-72. doi: 10.1016/j.molbiopara.2018.09.002 PMID: 30217772
  79. Reyes-Montaño, E.A.; Vega-Castro, N.A. Plant lectins with insecticidal and insectistatic activities In: Insecticides - Agricul and Toxicol. ; IntechOpen, 2018. doi: 10.5772/intechopen.74962
  80. Palharini, J.G.; Richter, A.C.; Silva, M.F.; Ferreira, F.B.; Pirovani, C.P.; Naves, K.S.C.; Goulart, V.A.; Mineo, T.W.P.; Silva, M.J.B.; Santiago, F.M. Eutirucallin: A lectin with antitumor and antimicrobial properties. Front. Cell. Infect. Microbiol., 2017, 7, 136. doi: 10.3389/fcimb.2017.00136 PMID: 28487845
  81. Almeida, A.C.; Osterne, V.J.S.; Santiago, M.Q.; Pinto-Junior, V.R.; Silva-Filho, J.C.; Lossio, C.F.; Nascimento, F.L.F.; Almeida, R.P.H.; Teixeira, C.S.; Leal, R.B.; Delatorre, P.; Rocha, B.A.M.; Assreuy, A.M.S.; Nascimento, K.S.; Cavada, B.S. Structural analysis of Centrolobium tomentosum seed lectin with inflammatory activity. Arch. Biochem. Biophys., 2016, 596, 73-83. doi: 10.1016/j.abb.2016.03.001 PMID: 26946944
  82. Véras, J.H.; Cardoso, C.G.; Puga, S.C.; de Melo Bisneto, A.V.; Roma, R.R.; Santos Silva, R.R.; Teixeira, C.S.; Chen-Chen, L. Lactose-binding lectin from Vatairea macrocarpa seeds induces in vivo angiogenesis via VEGF and TNF-ɑ expression and modulates in vitro doxorubicin-induced genotoxicity. Biochimie, 2022, 194, 55-66. doi: 10.1016/j.biochi.2021.12.011 PMID: 34973362
  83. Alves, A.C.; Vasconcelos, M.A.; Santiago, M.Q.; Pinto-Junior, V.R.; Silva Osterne, V.J.; Lossio, C.F.; Souza Ferreira Bringel, P.H.; Castro, R.R.; Nagano, C.S.; Delatorre, P.; Souza, L.A.G.; Nascimento, K.S.; Assreuy, A.M.S.; Cavada, B.S. A novel vasorelaxant lectin purified from seeds of Clathrotropis nitida : Partial characterization and immobilization in chitosan beads. Arch. Biochem. Biophys., 2015, 588, 33-40. doi: 10.1016/j.abb.2015.10.020 PMID: 26545483
  84. Barroso-Neto, I.L.; Delatorre, P.; Teixeira, C.S.; Correia, J.L.A.; Cajazeiras, J.B.; Pereira, R.I.; Nascimento, K.S.; Laranjeira, E.P.P.; Pires, A.F.; Assreuy, A.M.S.; Rocha, B.A.M.; Cavada, B.S. Structural analysis of a Dioclea sclerocarpa lectin: Study on the vasorelaxant properties of Dioclea lectins. Int. J. Biol. Macromol., 2016, 82, 464-470. doi: 10.1016/j.ijbiomac.2015.10.052 PMID: 26499084
  85. Kumaki, Y.; Wandersee, M.K.; Smith, A.J.; Zhou, Y.; Simmons, G.; Nelson, N.M.; Bailey, K.W.; Vest, Z.G.; Li, J.K.K.; Chan, P.K.S.; Smee, D.F.; Barnard, D.L. Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin, Urtica dioica agglutinin. Antiviral Res., 2011, 90(1), 22-32. doi: 10.1016/j.antiviral.2011.02.003 PMID: 21338626
  86. Grosche, V.R.; Souza, L.P.F.; Ferreira, G.M.; Guevara-Vega, M.; Carvalho, T.; Silva, R.R.S.; Batista, K.L.R.; Abuna, R.P.F.; Silva, J.S.; Calmon, M.F.; Rahal, P.; da Silva, L.C.N.; Andrade, B.S.; Teixeira, C.S.; Sabino-Silva, R.; Jardim, A.C.G. Mannose-binding lectins as potent antivirals against SARS-CoV-2. Viruses, 2023, 15(9), 1886. doi: 10.3390/v15091886 PMID: 37766292
  87. Scott, P.; Natovitz, P.; Coffman, R.L.; Pearce, E.; Sher, A. Immunoregulation of cutaneous leishmaniasis. T cell lines that transfer protective immunity or exacerbation belong to different T helper subsets and respond to distinct parasite antigens. J. Exp. Med., 1988, 168(5), 1675-1684. doi: 10.1084/jem.168.5.1675 PMID: 2903212
  88. Reiner, S.L.; Locksley, R.M. The regulation of immunity to Leishmania major. Annu. Rev. Immunol., 1995, 13(1), 151-177. doi: 10.1146/annurev.iy.13.040195.001055 PMID: 7612219
  89. Barbosa, T.; Arruda, S.; Cavada, B.; Grangeiro, T.B.; Freitas, L.A.R.; Barral-Netto, M. In vivo lymphocyte activation and apoptosis by lectins of the Diocleinae subtribe. Mem. Inst. Oswaldo Cruz, 2001, 96(5), 673-678. doi: 10.1590/S0074-02762001000500016 PMID: 11500769
  90. Mariano, V.S.; Zorzetto-Fernandes, A.L.; da Silva, T.A.; Ruas, L.P.; Nohara, L.L.; de Almeida, I.C.; Roque-Barreira, M.C. Recognition of TLR2 N-glycans: Critical role in ArtinM immunomodulatory activity. PLoS One, 2014, 9(6), e98512. doi: 10.1371/journal.pone.0098512 PMID: 24892697
  91. Kishko, I; Vasylenko, M.I; Pidhors'kyĭ, V.S.; Kovalenko, E.O. Lectin of Bacillus subtilis sp. As overinducer of gamma-interferonogenesis. Mikrobiolohichnyi zhurnal , 1997, 59(6), 20-26.
  92. Campbell, D.; Mann, B.J.; Chadee, K. A subunit vaccine candidate region of the Entamoeba histolytica galactose-adherence lectin promotes interleukin-12 gene transcription and protein production in human macrophages. Eur. J. Immunol., 2000, 30(2), 423-430. doi: 10.1002/1521-4141(200002)30:23.0.CO;2-0 PMID: 10671197
  93. Castés, M.; Blackwell, J.; Trujillo, D.; Formica, S.; Cabrera, M.; Zorrilla, G.; Rodas, A.; Castellanos, P.L.; Convit, J. Immune response in healthy volunteers vaccinated with killed leishmanial promastigotes plus BCG. I: Skin-test reactivity, T-cell proliferation and interferon-γ production. Vaccine, 1994, 12(11), 1041-1051. doi: 10.1016/0264-410X(94)90342-5 PMID: 7975845
  94. Panunto-Castelo, A.; Souza, M.A.; Roque-Barreira, M.C.; Silva, J.S. KM+, a lectin from Artocarpus integrifolia, induces IL-12 p40 production by macrophages and switches from type 2 to type 1 cell-mediated immunity against Leishmania major antigens, resulting in BALB/c mice resistance to infection. Glycobiology, 2001, 11(12), 1035-1042. doi: 10.1093/glycob/11.12.1035 PMID: 11805076
  95. Afonso-Cardoso, S.R.; Silva, C.V.; Ferreira, M.S.; Souza, M.A. Effect of the Synadenium carinatum latex lectin (ScLL) on Leishmania (Leishmania) amazonensis infection in murine macrophages. Exp. Parasitol., 2011, 128(1), 61-67. doi: 10.1016/j.exppara.2011.02.006 PMID: 21320493
  96. Fonseca, V.J.A.; Braga, A.L.; Filho, J.R.; Teixeira, C.S.; da Hora, G.C.A.; Morais-Braga, M.F.B. A review on the antimicrobial properties of lectins. Int. J. Biol. Macromol., 2022, 195, 163-178. doi: 10.1016/j.ijbiomac.2021.11.209 PMID: 34896466
  97. Barral-Netto, M.; Von Sohsten, R.L.; Teixeira, M.; Conrado dos Santos, W.L.; Pompeu, M.L.; Moreira, R.A.; Oliveira, J.T.A.; Cavada, B.S.; Falcoff, E.; Barral, A. In vivo protective effect of the lectin from Canavalia brasiliensis on BALB/c mice infected by Leishmania amazonensis. Acta Trop., 1996, 60(4), 237-250. doi: 10.1016/0001-706X(95)00120-4 PMID: 8659323

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024