The Disulfide Bond-Mediated Cyclization of Oral Peptides

  • Авторы: Yao C.1, Ye G.2, Yang Q.3, Chen Z.4, Yang M.5
  • Учреждения:
    1. Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology
    2. National Clinical Research Center for Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology
    3. College of Life Sciences, Wuhan University
    4. College of Life Science and Technology, Huazhong University of Science and Technology
    5. Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology
  • Выпуск: Том 25, № 6 (2024)
  • Страницы: 438-442
  • Раздел: Life Sciences
  • URL: https://archivog.com/1389-2037/article/view/645640
  • DOI: https://doi.org/10.2174/0113892037280719231214095428
  • ID: 645640

Цитировать

Полный текст

Аннотация

‘Structure determines function’ is a consensus in the current biological community, but the structural characteristics corresponding to a certain function have always been a hot field of scientific exploration. A peptide is a bio-active molecule that is between the size of an antibody and a small molecule. Still, the gastrointestinal barrier and the physicochemical properties of peptides have always limited the oral administration of peptides. Therefore, we analyze the main ways oral peptide conversion strategies of peptide modification and permeation enhancers. Based on our analysis of the structure of natural oral peptides, which can be absorbed through the gastrointestinal tract, we believe that the design strategy of natural stapled peptides based on disulfide bonds is good for oral peptide design. This cannot only be used to identify anti-gastrointestinal digestive structural proteins in nature but also provide a solid structural foundation for the construction of new oral peptide drugs.

Об авторах

Chenguang Yao

Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology

Email: info@benthamscience.net

Guoguo Ye

National Clinical Research Center for Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology

Email: info@benthamscience.net

Qin Yang

College of Life Sciences, Wuhan University

Email: info@benthamscience.net

Zhenwang Chen

College of Life Science and Technology, Huazhong University of Science and Technology

Email: info@benthamscience.net

Minghui Yang

Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology

Автор, ответственный за переписку.
Email: info@benthamscience.net

Список литературы

  1. Sulek, K. Nobel prize for Frederick G. Banting and John J. R. Macleod in 1923 for discovery of insulin. Wiad. Lek., 1967, 20(21), 1983-1984. PMID: 4876795
  2. Henninot, A.; Collins, J.C.; Nuss, J.M. The current state of peptide drug discovery: Back to the future? J. Med. Chem., 2018, 61(4), 1382-1414. doi: 10.1021/acs.jmedchem.7b00318 PMID: 28737935
  3. Lundquist, P.; Artursson, P. Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues. Adv. Drug Deliv. Rev., 2016, 106(15), 256-276.
  4. Drucker, D.J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov., 2020, 19(4), 277-289. doi: 10.1038/s41573-019-0053-0 PMID: 31848464
  5. Bockus, A.T.; McEwen, C.M.; Lokey, R.S. Form and function in cyclic peptide natural products: A pharmacokinetic perspective. Curr. Top. Med. Chem., 2013, 13(7), 821-836. doi: 10.2174/1568026611313070005 PMID: 23578026
  6. Santos, G.B.; Ganesan, A.; Emery, F.S. Oral administration of peptide-based drugs: Beyond Lipinski’s rule. ChemMedChem, 2016, 11(20), 2245-2251. doi: 10.1002/cmdc.201600288 PMID: 27596610
  7. Martin, A.; Wu, P.L.; Liron, Z.; Cohen, S. Dependence of solute solubility parameters on solvent polarity. J. Pharm. Sci., 1985, 74(6), 638-642. doi: 10.1002/jps.2600740611 PMID: 3839531
  8. Whitty, A.; Zhong, M.; Viarengo, L.; Beglov, D.; Hall, D.R.; Vajda, S. Quantifying the chameleonic properties of macrocycles and other high-molecular-weight drugs. Drug Discov. Today, 2016, 21(5), 712-717. doi: 10.1016/j.drudis.2016.02.005 PMID: 26891978
  9. Hewitt, W.M.; Leung, S.S.F.; Pye, C.R.; Ponkey, A.R.; Bednarek, M.; Jacobson, M.P.; Lokey, R.S. Cell-permeable cyclic peptides from synthetic libraries inspired by natural products. J. Am. Chem. Soc., 2015, 137(2), 715-721. doi: 10.1021/ja508766b PMID: 25517352
  10. Xu, S.; Li, H.; Shao, X.; Fan, C.; Ericksen, B.; Liu, J.; Chi, C.; Wang, C. Critical effect of peptide cyclization on the potency of peptide inhibitors against Dengue virus NS2B-NS3 protease. J. Med. Chem., 2012, 55(15), 6881-6887. doi: 10.1021/jm300655h PMID: 22780881
  11. Gomez, C.; Bai, L.; Zhang, J.; Nikolovska-Coleska, Z.; Chen, J.; Yi, H.; Wang, S. Design, synthesis, and evaluation of peptidomimetics containing Freidinger lactams as STAT3 inhibitors. Bioorg. Med. Chem. Lett., 2009, 19(6), 1733-1736. doi: 10.1016/j.bmcl.2009.01.091 PMID: 19243938
  12. Chen, J.; Bai, L.; Bernard, D.; Nikolovska-Coleska, Z.; Gomez, C.; Zhang, J.; Yi, H.; Wang, S. Structure-Based Design of Conformationally Constrained, Cell-Permeable STAT3 Inhibitors. ACS Med. Chem. Lett., 2010, 1(2), 85-89. doi: 10.1021/ml100010j PMID: 20596242
  13. Chen, J.; Nikolovska-Coleska, Z.; Yang, C.Y.; Gomez, C.; Gao, W.; Krajewski, K.; Jiang, S.; Roller, P.; Wang, S. Design and synthesis of a new, conformationally constrained, macrocyclic small-molecule inhibitor of STAT3 via ‘click chemistry’. Bioorg. Med. Chem. Lett., 2007, 17(14), 3939-3942. doi: 10.1016/j.bmcl.2007.04.096 PMID: 17513110
  14. Kawamoto, S.A.; Coleska, A.; Ran, X.; Yi, H.; Yang, C.Y.; Wang, S. Design of triazole-stapled BCL9 α-helical peptides to target the β-catenin/B-cell CLL/lymphoma 9 (BCL9) protein-protein interaction. J. Med. Chem., 2012, 55(3), 1137-1146. doi: 10.1021/jm201125d PMID: 22196480
  15. Nielsen, D.S.; Shepherd, N.E.; Xu, W.; Lucke, A.J.; Stoermer, M.J.; Fairlie, D.P. Orally absorbed cyclic peptides. Chem. Rev., 2017, 117(12), 8094-8128. doi: 10.1021/acs.chemrev.6b00838 PMID: 28541045
  16. Zhai, Y.; Zhao, X.; Cui, Z.; Wang, M.; Wang, Y.; Li, L.; Sun, Q.; Yang, X.; Zeng, D.; Liu, Y.; Sun, Y.; Lou, Z.; Shang, L.; Yin, Z. Cyanohydrin as an anchoring group for potent and selective inhibitors of enterovirus 71 3C protease. J. Med. Chem., 2015, 58(23), 9414-9420. doi: 10.1021/acs.jmedchem.5b01013 PMID: 26571192
  17. Ma, Y.; Shang, C.; Yang, P.; Li, L.; Zhai, Y.; Yin, Z.; Wang, B.; Shang, L. 4-Iminooxazolidin-2-one as a bioisostere of the cyanohydrin moiety: Inhibitors of enterovirus 71 3C protease. J. Med. Chem., 2018, 61(22), 10333-10339. doi: 10.1021/acs.jmedchem.8b01335 PMID: 30365311
  18. Holladay, M.W.; Salituro, F.G.; Rich, D.H. Synthetic and enzyme inhibition studies of pepstatin analogs containing hydroxyethylene and ketomethylene dipeptide isosteres. J. Med. Chem., 1987, 30(2), 374-383. doi: 10.1021/jm00385a020 PMID: 3100803
  19. Taylor, M.; Moore, S.; Mayes, J.; Parkin, E.; Beeg, M.; Canovi, M.; Gobbi, M.; Mann, D.M.A.; Allsop, D. Development of a proteolytically stable retro-inverso peptide inhibitor of beta-amyloid oligomerization as a potential novel treatment for Alzheimer’s disease. Biochemistry, 2010, 49(15), 3261-3272. doi: 10.1021/bi100144m PMID: 20230062
  20. Sparr, C.; Purkayastha, N.; Yoshinari, T.; Seebach, D.; Maschauer, S.; Prante, O.; Hübner, H.; Gmeiner, P.; Kolesinska, B.; Cescato, R.; Waser, B.; Reubi, J.C. Syntheses, receptor bindings, in vitro and in vivo stabilities and biodistributions of DOTA-neurotensin(8-13) derivatives containing β-amino acid residues - a lesson about the importance of animal experiments. Chem. Biodivers., 2013, 10(12), 2101-2121. doi: 10.1002/cbdv.201300331 PMID: 24327436
  21. Wang, C.; Shi, W.; Cai, L.; Lu, L.; Yu, F.; Wang, Q.; Jiang, X.; Xu, X.; Wang, K.; Xu, L.; Jiang, S.; Liu, K. Artificial peptides conjugated with cholesterol and pocket-specific small molecules potently inhibit infection by laboratory-adapted and primary HIV-1 isolates and enfuvirtide-resistant HIV-1 strains. J. Antimicrob. Chemother., 2014, 69(6), 1537-1545. doi: 10.1093/jac/dku010 PMID: 24500189
  22. Rizzuti, B.; Bartucci, R.; Sportelli, L.; Guzzi, R. Fatty acid binding into the highest affinity site of human serum albumin observed in molecular dynamics simulation. Arch. Biochem. Biophys., 2015, 579, 18-25. doi: 10.1016/j.abb.2015.05.018 PMID: 26048999
  23. Liu, Z.; Yu, Z.; Huang, Y.; Zhang, Y.; Han, G.; Li, X.; Dong, M.; Yu, S.; Wang, Y.; Hu, J.; Guo, H.; Cheng, Y.; Lv, L.; Dai, Q. A novel stearic acid-modified hirudin peptidomimetic with improved pharmacokinetic properties and anticoagulant activity. Sci. Rep., 2015, 5(1), 14349. doi: 10.1038/srep14349 PMID: 26400022
  24. Lau, J.; Bloch, P.; Schäffer, L.; Pettersson, I.; Spetzler, J.; Kofoed, J.; Madsen, K.; Knudsen, L.B.; McGuire, J.; Steensgaard, D.B.; Strauss, H.M.; Gram, D.X.; Knudsen, S.M.; Nielsen, F.S.; Thygesen, P.; Reedtz-Runge, S.; Kruse, T. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. J. Med. Chem., 2015, 58(18), 7370-7380. doi: 10.1021/acs.jmedchem.5b00726 PMID: 26308095
  25. Iepsen, E.W.; Torekov, S.S.; Holst, J.J. Liraglutide for Type 2 diabetes and obesity: A 2015 update. Expert Rev. Cardiovasc. Ther., 2015, 13(7), 753-767. doi: 10.1586/14779072.2015.1054810 PMID: 26106933
  26. Meier, J.J. Efficacy of semaglutide in a subcutaneous and an oral formulation. Front. Endocrinol. (Lausanne), 2021, 12, 645617. doi: 10.3389/fendo.2021.645617 PMID: 34248838
  27. Melmed, S.; Popovic, V.; Bidlingmaier, M.; Mercado, M.; van der Lely, A.J.; Biermasz, N.; Bolanowski, M.; Coculescu, M.; Schopohl, J.; Racz, K.; Glaser, B.; Goth, M.; Greenman, Y.; Trainer, P.; Mezosi, E.; Shimon, I.; Giustina, A.; Korbonits, M.; Bronstein, M.D.; Kleinberg, D.; Teichman, S.; Gliko-Kabir, I.; Mamluk, R.; Haviv, A.; Strasburger, C. Safety and efficacy of oral octreotide in acromegaly: Results of a multicenter phase III trial. J. Clin. Endocrinol. Metab., 2015, 100(4), 1699-1708. doi: 10.1210/jc.2014-4113 PMID: 25664604
  28. Karsdal, M.A.; Henriksen, K.; Bay-Jensen, A.C.; Molloy, B.; Arnold, M.; John, M.R.; Byrjalsen, I.; Azria, M.; Riis, B.J.; Qvist, P.; Christiansen, C. Lessons learned from the development of oral calcitonin: The first tablet formulation of a protein in phase III clinical trials. J. Clin. Pharmacol., 2011, 51(4), 460-471. doi: 10.1177/0091270010372625 PMID: 20660294
  29. Karsdal, M.A.; Byrjalsen, I.; Alexandersen, P.; Bihlet, A.; Andersen, J.R.; Riis, B.J.; Bay-Jensen, A.C.; Christiansen, C. Treatment of symptomatic knee osteoarthritis with oral salmon calcitonin: Results from two phase 3 trials. Osteoarthritis Cartilage, 2015, 23(4), 532-543. doi: 10.1016/j.joca.2014.12.019 PMID: 25582279
  30. Arbit, E.; Kidron, M. Oral insulin delivery in a physiologic context: Review. J. Diabetes Sci. Technol., 2017, 11(4), 825-832. doi: 10.1177/1932296817691303 PMID: 28654313
  31. Rehmani, S.; Dixon, J.E. Oral delivery of anti-diabetes therapeutics using cell penetrating and transcytosing peptide strategies. Peptides, 2018, 100, 24-35. doi: 10.1016/j.peptides.2017.12.014 PMID: 29412825
  32. a) Maher, S.; Brayden, D.; Casettari, L.; Illum, L. Application of permeation enhancers in oral delivery of macromolecules: An update. Pharmaceutics, 2019, 11(1), 41. doi: 10.3390/pharmaceutics11010041 PMID: 30669434; b) Wang, B.; Xie, N.; Li, B. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review. J. Food Biochem., 2019, 43(1), e12571. doi: 10.1111/jfbc.12571 PMID: 31353489
  33. Hu, K.; Huang, H.; Li, H.; Wei, Y.; Yao, C. Legume-derived biactive peptides in type 2 diabetes: Opportunities and challenges. Nutrients, 2023, 15(5), 1096.
  34. Yao, C-C.; Tong, Y-X.; Jiang, H.; Yang, D-R.; Zhang, X-J.; Zhang, P.; Su, L.; Zhao, Y-Y.; Chen, Z-W. Native polypeptide vglycin prevents nonalcholic fatty liver disease in mice by activating the AMPK pathway. J. Funct. Foods, 2020, 73, 104110.
  35. Zhao, H.; Dan, P.; Xi, J.; Chen, Z.; Zhang, P.; Wei, W.; Zhao, Y. Novel soybean polypeptide dglycin alleviates atherosclerosis in apolipoprotein E-deficient mice. Int. J. Biol. Macromol., 2023, 251, 126347. doi: 10.1016/j.ijbiomac.2023.126347 PMID: 37586634
  36. Huang, J.; Wong, K.H.; Tay, S.V.; Serra, A.; Sze, S.K.; Tam, J.P. Astratides: Insulin-modulating, insecticidal, and antifungal cysteine-rich peptides from Astragalus membranaceus. J. Nat. Prod., 2019, 82(2), 194-204. doi: 10.1021/acs.jnatprod.8b00521 PMID: 30758201

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Bentham Science Publishers, 2024