Molecular Players at the Sorting Stations of Malaria Parasite Plasmodium falciparum
- 作者: Kaur J.1, Mishra P.2, Hora R.3
-
隶属关系:
- Department of Biochemistry, Govt. College for Girls, Ludhiana, Punjab, India (Affiliated to Panjab University
- Biotechnology, Guru Nanak Dev University
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University
- 期: 卷 25, 编号 6 (2024)
- 页面: 427-437
- 栏目: Life Sciences
- URL: https://archivog.com/1389-2037/article/view/645637
- DOI: https://doi.org/10.2174/0113892037282522240130090156
- ID: 645637
如何引用文章
全文:
详细
The apicomplexan pathogenic parasite Plasmodium falciparum (Pf) is responsible for most of the malaria related mortality. It resides in and refurbishes the infected red blood cells (iRBCs) for its own survival and to suffice its metabolic needs. Remodeling of host erythrocytes involves alteration of physical and biochemical properties of the membrane and genesis of new parasite induced structures within the iRBCs. The generated structures include knobs and solute ion channels on the erythrocyte surface and specialized organelles i.e. Maurers clefts (MCs) in the iRBC cytosol. The above processes are mediated by exporting a large repertoire of proteins to the host cell, most of which are transported via MCs, the sorting stations in parasitized erythrocytes. Information about MC biogenesis and the molecules involved in maintaining MC architecture remains incompletely elucidated. Here, we have compiled a list of experimentally known MC resident proteins, several of which have roles in maintaining its architecture and function. Our short review covers available data on the domain organization, orthologues, topology and specific roles of these proteins. We highlight the current knowledge gaps in our understanding of MCs as crucial organelles involved in parasite biology and disease pathogenesis.
作者简介
Jasweer Kaur
Department of Biochemistry, Govt. College for Girls, Ludhiana, Punjab, India (Affiliated to Panjab University
Email: info@benthamscience.net
Prakash Mishra
Biotechnology, Guru Nanak Dev University
Email: info@benthamscience.net
Rachna Hora
Department of Molecular Biology and Biochemistry, Guru Nanak Dev University
编辑信件的主要联系方式.
Email: info@benthamscience.net
参考
- World malaria report. 2022. Available from: https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2022 (Accessed on: August 12, 2023).
- White, N.J.; Ho, M. The pathophysiology of Malaria. In: Advances in Parasitology; Baker, J.R.; Muller, R., Eds.; Academic Press, 1992; Vol. 31, pp. 83-173. doi: 10.1016/S0065-308X(08)60021-4
- Prevention CC for DC and. Biology. 2020. Available from: https://www.cdc.gov/malaria/about/biology/index.html (Accessed on: August 12, 2023).
- Lopes, S.C.P.; Albrecht, L.; Carvalho, B.O.; Siqueira, A.M.; Thomson-Luque, R.; Nogueira, P.A.; Fernandez-Becerra, C.; del Portillo, H.A.; Russell, B.M.; Rénia, L.; Lacerda, M.V.G.; Costa, F.T.M. Paucity of Plasmodium vivax mature schizonts in peripheral blood is associated with their increased cytoadhesive potential. J. Infect. Dis., 2014, 209(9), 1403-1407. doi: 10.1093/infdis/jiu018 PMID: 24415786
- Hiller, N.L.; Bhattacharjee, S.; van Ooij, C.; Liolios, K.; Harrison, T.; Lopez-Estraño, C.; Haldar, K. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science, 2004, 306(5703), 1934-1937. doi: 10.1126/science.1102737 PMID: 15591203
- Marti, M.; Baum, J.; Rug, M.; Tilley, L.; Cowman, A.F. Signal-mediated export of proteins from the malaria parasite to the host erythrocyte. J. Cell Biol., 2005, 171(4), 587-592. doi: 10.1083/jcb.200508051 PMID: 16301328
- Blisnick, T.; Morales Betoulle, M.E.; Barale, J.C.; Uzureau, P.; Berry, L.; Desroses, S.; Fujioka, H.; Mattei, D.; Breton, B.C. Pfsbp1, a maurers cleft Plasmodium falciparum protein, is associated with the erythrocyte skeleton. Mol. Biochem. Parasitol., 2000, 111(1), 107-121. doi: 10.1016/S0166-6851(00)00301-7 PMID: 11087921
- Spielmann, T.; Hawthorne, P.L.; Dixon, M.W.A.; Hannemann, M.; Klotz, K.; Kemp, D.J.; Klonis, N.; Tilley, L.; Trenholme, K.R.; Gardiner, D.L. A cluster of ring stage-specific genes linked to a locus implicated in cytoadherence in Plasmodium falciparum codes for PEXEL-negative and PEXEL-positive proteins exported into the host cell. Mol. Biol. Cell, 2006, 17(8), 3613-3624. doi: 10.1091/mbc.e06-04-0291 PMID: 16760427
- Spycher, C.; Klonis, N.; Spielmann, T.; Kump, E.; Steiger, S.; Tilley, L.; Beck, H.P. MAHRP-1, a novel Plasmodium falciparum histidine-rich protein, binds ferriprotoporphyrin IX and localizes to the Maurers clefts. J. Biol. Chem., 2003, 278(37), 35373-35383. doi: 10.1074/jbc.M305851200 PMID: 12815049
- Spycher, C.; Rug, M.; Klonis, N.; Ferguson, D.J.P.; Cowman, A.F.; Beck, H.P.; Tilley, L. Genesis of and trafficking to the Maurers clefts of Plasmodium falciparum-infected erythrocytes. Mol. Cell. Biol., 2006, 26(11), 4074-4085. doi: 10.1128/MCB.00095-06 PMID: 16705161
- Tilley, L.; Sougrat, R.; Lithgow, T.; Hanssen, E. The twists and turns of Maurers cleft trafficking in P. falciparum-infected erythrocytes. Traffic, 2008, 9(2), 187-197. doi: 10.1111/j.1600-0854.2007.00684.x PMID: 18088325
- Blythe, J.E.; Yam, X.Y.; Kuss, C.; Bozdech, Z.; Holder, A.A.; Marsh, K.; Langhorne, J.; Preiser, P.R. Plasmodium falciparum STEVOR proteins are highly expressed in patient isolates and located in the surface membranes of infected red blood cells and the apical tips of merozoites. Infect. Immun., 2008, 76(7), 3329-3336. doi: 10.1128/IAI.01460-07 PMID: 18474651
- Joannin, N.; Abhiman, S.; Sonnhammer, E.L.; Wahlgren, M. Sub-grouping and sub-functionalization of the RIFIN multi-copy protein family. BMC Genomics, 2008, 9(1), 19. doi: 10.1186/1471-2164-9-19 PMID: 18197962
- Kaviratne, M.; Khan, S.M.; Jarra, W.; Preiser, P.R. Small variant STEVOR antigen is uniquely located within Maurers clefts in Plasmodium falciparum-infected red blood cells. Eukaryot. Cell, 2002, 1(6), 926-935. doi: 10.1128/EC.1.6.926-935.2002 PMID: 12477793
- Kyes, S.A.; Rowe, J.A.; Kriek, N.; Newbold, C.I. Rifins: A second family of clonally variant proteins expressed on the surface of red cells infected with Plasmodium falciparum. Proc. Natl. Acad. Sci., 1999, 96(16), 9333-9338. doi: 10.1073/pnas.96.16.9333 PMID: 10430943
- Lavazec, C.; Sanyal, S.; Templeton, T.J. Hypervariability within the Rifin, Stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Nucleic Acids Res., 2006, 34(22), 6696-6707. doi: 10.1093/nar/gkl942 PMID: 17148488
- Mundwiler-Pachlatko, E.; Beck, H.P. Maurers clefts, the enigma of Plasmodium falciparum. Proc. Natl. Acad. Sci., 2013, 110(50), 19987-19994. doi: 10.1073/pnas.1309247110 PMID: 24284172
- Niang, M.; Yan Yam, X.; Preiser, P.R. The Plasmodium falciparum STEVOR multigene family mediates antigenic variation of the infected erythrocyte. PLoS Pathog., 2009, 5(2), e1000307. doi: 10.1371/journal.ppat.1000307 PMID: 19229319
- Przyborski, J.M.; Miller, S.K.; Pfahler, J.M.; Henrich, P.P.; Rohrbach, P.; Crabb, B.S.; Lanzer, M. Trafficking of STEVOR to the Maurers clefts in Plasmodium falciparum-infected erythrocytes. EMBO J., 2005, 24(13), 2306-2317. doi: 10.1038/sj.emboj.7600720 PMID: 15961998
- Sam-Yellowe, T.Y.; Florens, L.; Johnson, J.R.; Wang, T.; Drazba, J.A.; Le Roch, K.G.; Zhou, Y.; Batalov, S.; Carucci, D.J.; Winzeler, E.A.; Yates, J.R., III A Plasmodium gene family encoding Maurers cleft membrane proteins: Structural properties and expression profiling. Genome Res., 2004, 14(6), 1052-1059. doi: 10.1101/gr.2126104 PMID: 15140830
- Tsarukyanova, I.; Drazba, J.A.; Fujioka, H.; Yadav, S.P.; Sam-Yellowe, T.Y. Proteins of the Plasmodium falciparum two transmembrane maurers cleft protein family, PfMC-2TM, and the 130 kDa Maurers cleft protein define different domains of the infected erythrocyte intramembranous network. Parasitol. Res., 2009, 104(4), 875-891. doi: 10.1007/s00436-008-1270-3 PMID: 19130087
- Vincensini, L.; Richert, S.; Blisnick, T.; Van Dorsselaer, A.; Leize-Wagner, E.; Rabilloud, T.; Breton, B.C. Proteomic analysis identifies novel proteins of the Maurers clefts, a secretory compartment delivering Plasmodium falciparum proteins to the surface of its host cell. Mol. Cell. Proteomics, 2005, 4(4), 582-593. doi: 10.1074/mcp.M400176-MCP200 PMID: 15671043
- Kumar, V.; Kaur, J.; Singh, A.P.; Singh, V.; Bisht, A.; Panda, J.J.; Mishra, P.C.; Hora, R. PHIST c protein family members localize to different subcellular organelles and bind Plasmodium falciparum major virulence factor PfEMP-1. FEBS J., 2018, 285(2), 294-312. doi: 10.1111/febs.14340 PMID: 29155505
- Pachlatko, E.; Rusch, S.; Müller, A.; Hemphill, A.; Tilley, L.; Hanssen, E.; Beck, H.P. MAHRP2, an exported protein of Plasmodium falciparum, is an essential component of Maurers cleft tethers. Mol. Microbiol., 2010, 77(5), 1136-1152. doi: 10.1111/j.1365-2958.2010.07278.x PMID: 20624222
- Hanssen, E.; Hawthorne, P.; Dixon, M.W.A.; Trenholme, K.R.; McMillan, P.J.; Spielmann, T.; Gardiner, D.L.; Tilley, L. Targeted mutagenesis of the ring-exported protein-1 of Plasmodium falciparum disrupts the architecture of Maurers cleft organelles. Mol. Microbiol., 2008, 69(4), 938-953. doi: 10.1111/j.1365-2958.2008.06329.x PMID: 18573183
- Wickert, H.; Göttler, W.; Krohne, G.; Lanzer, M. Maurers cleft organization in the cytoplasm of Plasmodium falciparum-infected erythrocytes: new insights from three-dimensional reconstruction of serial ultrathin sections. Eur. J. Cell Biol., 2004, 83(10), 567-582. doi: 10.1078/0171-9335-00432 PMID: 15679102
- Wickert, H.; Krohne, G. The complex morphology of Maurers clefts: From discovery to three-dimensional reconstructions. Trends Parasitol., 2007, 23(10), 502-509. doi: 10.1016/j.pt.2007.08.008 PMID: 17888738
- Zhang, M.; Faou, P.; Maier, A.G.; Rug, M. Plasmodium falciparum exported protein PFE60 influences Maurers clefts architecture and virulence complex composition. Int. J. Parasitol., 2018, 48(1), 83-95. doi: 10.1016/j.ijpara.2017.09.003 PMID: 29100811
- Grüring, C.; Heiber, A.; Kruse, F.; Ungefehr, J.; Gilberger, T.W.; Spielmann, T. Development and host cell modifications of Plasmodium falciparum blood stages in four dimensions. Nat. Commun., 2011, 2(1), 165. doi: 10.1038/ncomms1169 PMID: 21266965
- McMillan, P.J.; Millet, C.; Batinovic, S.; Maiorca, M.; Hanssen, E.; Kenny, S.; Muhle, R.A.; Melcher, M.; Fidock, D.A.; Smith, J.D.; Dixon, M.W.A.; Tilley, L. Spatial and temporal mapping of the PfEMP1 export pathway in Plasmodium falciparum. Cell. Microbiol., 2013, 15(8), 1401-1418. doi: 10.1111/cmi.12125 PMID: 23421990
- Cyrklaff, M.; Sanchez, C.P.; Kilian, N.; Bisseye, C.; Simpore, J.; Frischknecht, F.; Lanzer, M. Hemoglobins S and C interfere with actin remodeling in Plasmodium falciparum-infected erythrocytes. Science, 2011, 334(6060), 1283-1286. doi: 10.1126/science.1213775 PMID: 22075726
- Rug, M.; Cyrklaff, M.; Mikkonen, A.; Lemgruber, L.; Kuelzer, S.; Sanchez, C.P.; Thompson, J.; Hanssen, E.; ONeill, M.; Langer, C.; Lanzer, M.; Frischknecht, F.; Maier, A.G.; Cowman, A.F. Export of virulence proteins by malaria-infected erythrocytes involves remodeling of host actin cytoskeleton. Blood, 2014, 124(23), 3459-3468. doi: 10.1182/blood-2014-06-583054 PMID: 25139348
- Kilian, N.; Dittmer, M.; Cyrklaff, M.; Ouermi, D.; Bisseye, C.; Simpore, J.; Frischknecht, F.; Sanchez, C.P.; Lanzer, M. Haemoglobin S and C affect the motion of Maurers clefts in Plasmodium falciparum -infected erythrocytes. Cell. Microbiol., 2013, 15(7), 1111-1126. doi: 10.1111/cmi.12102 PMID: 23279197
- Knuepfer, E.; Rug, M.; Klonis, N.; Tilley, L.; Cowman, A.F. Trafficking of the major virulence factor to the surface of transfected P falciparuminfected erythrocytes. Blood, 2005, 105(10), 4078-4087. doi: 10.1182/blood-2004-12-4666 PMID: 15692070
- Kriek, N.; Tilley, L.; Horrocks, P.; Pinches, R.; Elford, B.C.; Ferguson, D.J.P.; Lingelbach, K.; Newbold, C.I. Characterization of the pathway for transport of the cytoadherence-mediating protein, PfEMP1, to the host cell surface in malaria parasite-infected erythrocytes. Mol. Microbiol., 2003, 50(4), 1215-1227. doi: 10.1046/j.1365-2958.2003.03784.x PMID: 14622410
- Külzer, S.; Charnaud, S.; Dagan, T.; Riedel, J.; Mandal, P.; Pesce, E.R.; Blatch, G.L.; Crabb, B.S.; Gilson, P.R.; Przyborski, J.M. Plasmodium falciparum -encoded exported hsp70/hsp40 chaperone/co-chaperone complexes within the host erythrocyte. Cell. Microbiol., 2012, 14(11), 1784-1795. doi: 10.1111/j.1462-5822.2012.01840.x PMID: 22925632
- McHugh, E.; Carmo, O.M.S.; Blanch, A.; Looker, O.; Liu, B.; Tiash, S.; Andrew, D.; Batinovic, S.; Low, A.J.Y.; Cho, H.J.; McMillan, P.; Tilley, L.; Dixon, M.W.A. Role of Plasmodium falciparum protein GEXP07 in Maurers cleft morphology, knob architecture, and P. falciparum EMP1 trafficking. MBio, 2020, 11(2), e03320-19. doi: 10.1128/mBio.03320-19 PMID: 32184257
- Saxena, R.; Kaur, J.; Hora, R.; Singh, P.; Singh, V.; Mishra, P.C. CX3CL1 binding protein-2 (CBP2) of Plasmodium falciparum binds nucleic acids. Int. J. Biol. Macromol., 2019, 138, 996-1005. doi: 10.1016/j.ijbiomac.2019.07.178 PMID: 31356937
- Aurrecoechea, C.; Brestelli, J.; Brunk, B.P.; Dommer, J.; Fischer, S.; Gajria, B.; Gao, X.; Gingle, A.; Grant, G.; Harb, O.S.; Heiges, M.; Innamorato, F.; Iodice, J.; Kissinger, J.C.; Kraemer, E.; Li, W.; Miller, J.A.; Nayak, V.; Pennington, C.; Pinney, D.F.; Roos, D.S.; Ross, C.; Stoeckert, C.J., Jr; Treatman, C.; Wang, H. PlasmoDB: A functional genomic database for malaria parasites. Nucleic Acids Res., 2009, 37(Database), D539-D543. doi: 10.1093/nar/gkn814 PMID: 18957442
- Saridaki, T.; Fröhlich, K.S.; Braun-Breton, C.; Lanzer, M. Export of PfSBP1 to the Plasmodium falciparum maurers clefts. Traffic, 2009, 10(2), 137-152. doi: 10.1111/j.1600-0854.2008.00860.x PMID: 19054387
- Mbengue, A.; Vialla, E.; Berry, L.; Fall, G.; Audiger, N.; Demettre-Verceil, E.; Boteller, D.; Braun-Breton, C. NEW export pathway in plasmodium falciparum -infected erythrocytes: Role of the parasite group II Chaperonin, PFTRIC. Traffic, 2015, 16(5), 461-475. doi: 10.1111/tra.12266 PMID: 25615740
- Kubota, H.; Hynes, G.; Willison, K. The chaperonin containing t-complex polypeptide 1 (TCP-1). Eur. J. Biochem., 1995, 230(1), 3-16. doi: 10.1111/j.1432-1033.1995.tb20527.x PMID: 7601114
- Kats, L.M.; Proellocks, N.I.; Buckingham, D.W.; Blanc, L.; Hale, J.; Guo, X.; Pei, X.; Herrmann, S.; Hanssen, E.G.; Coppel, R.L.; Mohandas, N.; An, X.; Cooke, B.M. Interactions between Plasmodium falciparum skeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells. Biochim. Biophys. Acta Biomembr., 2015, 1848(7), 1619-1628. doi: 10.1016/j.bbamem.2015.03.038 PMID: 25883090
- Blisnick, T.; Vincensini, L.; Fall, G.; Braun-Breton, C. Protein phosphatase 1, a Plasmodium falciparum essential enzyme, is exported to the host cell and implicated in the release of infectious merozoites. Cell. Microbiol., 2006, 8(4), 591-601. doi: 10.1111/j.1462-5822.2005.00650.x PMID: 16548885
- Blisnick, T.; Vincensini, L.; Barale, J.C.; Namane, A.; Braun Breton, C. LANCL1, an erythrocyte protein recruited to the Maurers clefts during Plasmodium falciparum development. Mol. Biochem. Parasitol., 2005, 141(1), 39-47. doi: 10.1016/j.molbiopara.2005.01.013 PMID: 15811525
- Cooke, B.M.; Buckingham, D.W.; Glenister, F.K.; Fernandez, K.M.; Bannister, L.H.; Marti, M.; Mohandas, N.; Coppel, R.L. A Maurers cleftassociated protein is essential for expression of the major malaria virulence antigen on the surface of infected red blood cells. J. Cell Biol., 2006, 172(6), 899-908. doi: 10.1083/jcb.200509122 PMID: 16520384
- Pasternak, N.D.; Dzikowski, R. PfEMP1: An antigen that plays a key role in the pathogenicity and immune evasion of the malaria parasite Plasmodium falciparum. Int. J. Biochem. Cell Biol., 2009, 41(7), 1463-1466. doi: 10.1016/j.biocel.2008.12.012 PMID: 19150410
- Maier, A.G.; Rug, M.; ONeill, M.T.; Beeson, J.G.; Marti, M.; Reeder, J.; Cowman, A.F. Skeleton-binding protein 1 functions at the parasitophorous vacuole membrane to traffic PfEMP1 to the Plasmodium falciparuminfected erythrocyte surface. Blood, 2007, 109(3), 1289-1297. doi: 10.1182/blood-2006-08-043364 PMID: 17023587
- Chan, J.A.; Howell, K.B.; Langer, C.; Maier, A.G.; Hasang, W.; Rogerson, S.J.; Petter, M.; Chesson, J.; Stanisic, D.I.; Duffy, M.F.; Cooke, B.M.; Siba, P.M.; Mueller, I.; Bull, P.C.; Marsh, K.; Fowkes, F.J.I.; Beeson, J.G. A single point in protein trafficking by Plasmodium falciparum determines the expression of major antigens on the surface of infected erythrocytes targeted by human antibodies. Cell. Mol. Life Sci., 2016, 73(21), 4141-4158. doi: 10.1007/s00018-016-2267-1 PMID: 27193441
- Hawthorne, P.L.; Trenholme, K.R.; Skinner-Adams, T.S.; Spielmann, T.; Fischer, K.; Dixon, M.W.A.; Ortega, M.R.; Anderson, K.L.; Kemp, D.J.; Gardiner, D.L. A novel Plasmodium falciparum ring stage protein, REX, is located in Maurers clefts. Mol. Biochem. Parasitol., 2004, 136(2), 181-189. doi: 10.1016/j.molbiopara.2004.03.013 PMID: 15481109
- Dixon, M.W.A.; Kenny, S.; McMillan, P.J.; Hanssen, E.; Trenholme, K.R.; Gardiner, D.L.; Tilley, L. Genetic ablation of a Maurers cleft protein prevents assembly of the Plasmodium falciparum virulence complex. Mol. Microbiol., 2011, 81(4), 982-993. doi: 10.1111/j.1365-2958.2011.07740.x PMID: 21696460
- Haase, S.; Herrmann, S.; Grüring, C.; Heiber, A.; Jansen, P.W.; Langer, C.; Treeck, M.; Cabrera, A.; Bruns, C.; Struck, N.S.; Kono, M.; Engelberg, K.; Ruch, U.; Stunnenberg, H.G.; Gilberger, T.W.; Spielmann, T. Sequence requirements for the export of the Plasmodium falciparum Maurers clefts protein REX2. Mol. Microbiol., 2009, 71(4), 1003-1017. doi: 10.1111/j.1365-2958.2008.06582.x PMID: 19170882
- Spycher, C.; Rug, M.; Pachlatko, E.; Hanssen, E.; Ferguson, D.; Cowman, A.F.; Tilley, L.; Beck, H.P. The Maurers cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface of Plasmodium falciparum -infected erythrocytes. Mol. Microbiol., 2008, 68(5), 1300-1314. doi: 10.1111/j.1365-2958.2008.06235.x PMID: 18410498
- Marti, M.; Good, R.T.; Rug, M.; Knuepfer, E.; Cowman, A.F. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science, 2004, 306(5703), 1930-1933. doi: 10.1126/science.1102452 PMID: 15591202
- Mattei, D.; Scherf, A. The Pf332 gene codes for a megadalton protein of Plasmodium falciparum asexual blood stages. Mem. Inst. Oswaldo Cruz, 1992, 87(S3), 163-168. doi: 10.1590/S0074-02761992000700026 PMID: 1364200
- Mattei, D.; Scherf, A. The Pf332 gene of Plasmodium falciparum codes for a giant protein that is translocated from the parasite to the membrane of infected erythrocytes. Gene, 1992, 110(1), 71-79. doi: 10.1016/0378-1119(92)90446-V PMID: 1544579
- Moll, K.; Chêne, A.; Ribacke, U.; Kaneko, O.; Nilsson, S.; Winter, G.; Haeggström, M.; Pan, W.; Berzins, K.; Wahlgren, M.; Chen, Q. A novel DBL-domain of the P. falciparum 332 molecule possibly involved in erythrocyte adhesion. PLoS One, 2007, 2(5), e477. doi: 10.1371/journal.pone.0000477 PMID: 17534427
- Carmo, O.M.S.; Shami, G.J.; Cox, D.; Liu, B.; Blanch, A.J.; Tiash, S.; Tilley, L.; Dixon, M.W.A. Deletion of the Plasmodium falciparum exported protein PTP7 leads to Maurers clefts vesiculation, host cell remodeling defects, and loss of surface presentation of EMP1. PLoS Pathog., 2022, 18(8), e1009882. doi: 10.1371/journal.ppat.1009882 PMID: 35930605
- Almaazmi, S.Y.; Singh, H.; Dutta, T.; Blatch, G.L. Exported J domain proteins of the human malaria parasite. Front. Mol. Biosci., 2022, 9, 978663. doi: 10.3389/fmolb.2022.978663 PMID: 36120546
- Waller, K.L.; Nunomura, W.; An, X.; Cooke, B.M.; Mohandas, N.; Coppel, R.L. Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells. Blood, 2003, 102(5), 1911-1914. doi: 10.1182/blood-2002-11-3513 PMID: 12730097
- Waller, K.L.; Stubberfield, L.M.; Dubljevic, V.; Buckingham, D.W.; Mohandas, N.; Coppel, R.L.; Cooke, B.M. Interaction of the exported malaria protein Pf332 with the red blood cell membrane skeleton. Biochim. Biophys. Acta Biomembr., 2010, 1798(5), 861-871. doi: 10.1016/j.bbamem.2010.01.018 PMID: 20132790
- Glenister, F.K.; Fernandez, K.M.; Kats, L.M.; Hanssen, E.; Mohandas, N.; Coppel, R.L.; Cooke, B.M. Functional alteration of red blood cells by a megadalton protein of Plasmodium falciparum. Blood, 2009, 113(4), 919-928. doi: 10.1182/blood-2008-05-157735 PMID: 18832660
- Nilsson, S.; Angeletti, D.; Wahlgren, M.; Chen, Q.; Moll, K. Plasmodium falciparum antigen 332 is a resident peripheral membrane protein of Maurers clefts. PLoS One, 2012, 7(11), e46980. doi: 10.1371/journal.pone.0046980 PMID: 23185236
- Kaur, J.; Kumar, V.; Singh, A.P.; Singh, V.; Bisht, A.; Dube, T.; Panda, J.J.; Behl, A.; Mishra, P.C.; Hora, R. Plasmodium falciparum protein PfJ23 hosts distinct binding sites for major virulence factor PfEMP1 and Maurers cleft marker PfSBP1. Pathog. Dis., 2018, 76(9), fty090. doi: 10.1093/femspd/fty090 PMID: 30576479
- Lavazec, C.; Sanyal, S.; Templeton, T.J. Expression switching in the stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. Mol. Microbiol., 2007, 64(6), 1621-1634. doi: 10.1111/j.1365-2958.2007.05767.x PMID: 17555442
- Bachmann, A.; Scholz, J.A.M.; Janßen, M.; Klinkert, M.Q.; Tannich, E.; Bruchhaus, I.; Petter, M. A comparative study of the localization and membrane topology of members of the RIFIN, STEVOR and PfMC-2TM protein families in Plasmodium falciparum-infected erythrocytes. Malar. J., 2015, 14(1), 274. doi: 10.1186/s12936-015-0784-2 PMID: 26173856
- Yadavalli, R.; Peterson, J.W.; Drazba, J.A.; Sam-Yellowe, T.Y. Trafficking and Association of Plasmodium falciparum MC-2TM with the Maurers clefts. Pathogens, 2021, 10(4), 431. doi: 10.3390/pathogens10040431 PMID: 33916455
- Maier, A.G.; Rug, M.; ONeill, M.T.; Brown, M.; Chakravorty, S.; Szestak, T.; Chesson, J.; Wu, Y.; Hughes, K.; Coppel, R.L.; Newbold, C.; Beeson, J.G.; Craig, A.; Crabb, B.S.; Cowman, A.F. Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell, 2008, 134(1), 48-61. doi: 10.1016/j.cell.2008.04.051 PMID: 18614010
- Prajapati, S.K.; Singh, O.P. Remodeling of human red cells infected with Plasmodium falciparum and the impact of PHIST proteins. Blood Cells Mol. Dis., 2013, 51(3), 195-202. doi: 10.1016/j.bcmd.2013.06.003 PMID: 23880461
- Kumar, V.; Behl, A.; Sharma, R.; Sharma, A.; Hora, R. Plasmodium helical interspersed subtelomeric familyan enigmatic piece of the Plasmodium biology puzzle. Parasitol. Res., 2019, 118(10), 2753-2766. doi: 10.1007/s00436-019-06420-9 PMID: 31418110
- Regev-Rudzki, N.; Wilson, D.W.; Carvalho, T.G.; Sisquella, X.; Coleman, B.M.; Rug, M.; Bursac, D.; Angrisano, F.; Gee, M.; Hill, A.F.; Baum, J.; Cowman, A.F. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell, 2013, 153(5), 1120-1133. doi: 10.1016/j.cell.2013.04.029 PMID: 23683579
- Sargeant, T.; Marti, M.; Caler, E.; Carlton, J.; Simpson, K.; Speed, T.; Cowman, A. Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol., 2006, 7(2), R12. doi: 10.1186/gb-2006-7-2-r12 PMID: 16507167
- Zhang, Q.; Ma, C.; Oberli, A.; Zinz, A.; Engels, S.; Przyborski, J.M. Proteomic analysis of exported chaperone/co-chaperone complexes of P. falciparum reveals an array of complex protein-protein interactions. Sci. Rep., 2017, 7(1), 42188. doi: 10.1038/srep42188 PMID: 28218284
补充文件
