Design and Simulation of the Microcantilever Biosensor for MITF Antigen and D5 Monoclonal Antibody Interaction Finite Element Analysis, and Experimental


Cite item

Full Text

Abstract

Background:Biosensors and MEMS have witnessed rapid development and enormous interest over the past decades. Constant advancement in diagnostic, medical, and chemical applications has been demonstrated in several platforms and tools. In this study, the analytical and FEA of the microcantilever used in biomolecular analyses were compared with the experimental analysis results.

Methods:In this study, MITF antigen, which is a melanoma biomarker, and anti-MITF antibody (D5) were selected as biomolecules. A MEMS-type microcantilever biosensor was designed by functionalizing the AFM cantilever by utilizing the specific interaction dynamics and intermolecular binding ability between both molecules. Surface functionalization of cantilever micro biosensors was performed by using FEA. The stress that will occur as a result of the interactions between the MITF-D5 has been determined from the deviation in the resonant frequency of the cantilever.

Results:It has been found that the simulation results are supported by analytical calculations and experimental results.

Conclusion:The fact that the results of the simulation study overlap with the experimental and mathematical results allows us to get much cheaper and faster answers compared to expensive and time-consuming experimental approaches.

About the authors

Pelin Akcali

Department of Biomedical Engineering, Istanbul Yeniyuzyil University,

Email: info@benthamscience.net

Kübra Kelleci

Department of Medical Services and Techniques,, Beykoz Vocational School of Logistics

Author for correspondence.
Email: info@benthamscience.net

Sevil Ozer

Department of Biomedical Engineering, Istanbul Yeniyuzyil University,

Email: info@benthamscience.net

References

  1. Villarreal-Gómez, L. J.; Soria-Mercado, I. E.; Hernandez-Gómez, M.; Giraldi, R. G. Detection of molecular markers of cancer through the use of biosensors. Biol Med (Aligarh), 2015. doi: 10.4172/0974-8369.1000s2-005
  2. Andor, N.; Graham, T.A.; Jansen, M.; Xia, L.C.; Aktipis, C.A.; Petritsch, C.; Ji, H.P.; Maley, C.C. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med., 2016, 22(1), 105-113. doi: 10.1038/nm.3984 PMID: 26618723
  3. Weinstein, D.; Leininger, J.; Hamby, C.; Safai, B. Diagnostic and prognostic biomarkers in melanoma. J. Clin. Aesthet. Dermatol., 2014, 7(6), 13-24. PMID: 25013535
  4. Víšová, I.; Smolková, B.; Uzhytchak, M.; Vrabcová, M.; Zhigunova, Y.; Houska, M.; Surman, F.; de los Santos Pereira, A.; Lunov, O.; Dejneka, A.; Vaisocherová-Lísalová, H. Modulation of living cell behavior with ultra-low fouling polymer brush interfaces. Macromol. Biosci., 2020, 20(3), 1900351. PMID: 32045093
  5. Patel, R.; Mitra, B.; Vinchurkar, M.; Adami, A.; Patkar, R.; Giacomozzi, F.; Lorenzelli, L.; Baghini, M.S. Plant pathogenicity and associated/related detection systems. A review. Talanta, 2023, 251, 123808. doi: 10.1016/j.talanta.2022.123808 PMID: 35944418
  6. Chadha, U.; Bhardwaj, P.; Agarwal, R.; Rawat, P.; Agarwal, R.; Gupta, I.; Panjwani, M.; Singh, S.; Ahuja, C.; Selvaraj, S.K.; Banavoth, M.; Sonar, P.; Badoni, B.; Chakravorty, A. Recent progress and growth in biosensors technology: A critical review. J. Ind. Eng. Chem., 2022, 109, 21-51. doi: 10.1016/j.jiec.2022.02.010
  7. Futane, A.; Narayanamurthy, V.; Jadhav, P.; Srinivasan, A. Aptamer-based rapid diagnosis for point-of-care application. Microfluid. Nanofluidics, 2023, 27(2), 15. doi: 10.1007/s10404-022-02622-3 PMID: 36688097
  8. Kharati, M.; Rabiee, M.; Rostami-Nejad, M.; Aghamohammadi, E.; Asadzadeh-Aghdaei, H.; Zali, M.R.; Rabiee, N.; Fatahi, Y.; Bagherzadeh, M.; Webster, T.J. Development of a nano biosensor for anti-gliadin detection for Celiac disease based on suspension microarrays. Biomed. Phys. Eng. Express, 2020, 6(5), 055015. doi: 10.1088/2057-1976/aba7ca PMID: 33444246
  9. Gan, Z.; Zhou, Q.; Zheng, C.; Wang, J. Challenges and applications of volatile organic compounds monitoring technology in plant disease diagnosis. Biosens. Bioelectron., 2023, 237, 115540. doi: 10.1016/j.bios.2023.115540 PMID: 37523812
  10. Chien, C.C.; Jiang, J.; Gong, B.; Li, T.; Gaitas, A. AFM microfluidic cantilevers as weight sensors for live single cell mass measurements. Meas. Sci. Technol., 2022, 33(9), 095009. doi: 10.1088/1361-6501/ac7280 PMID: 35832465
  11. Wang, J.; Xu, B.; Zhu, Y.; Zhao, J. Microcantilever sensors for biochemical detection. J. Semicond., 2023, 44(2), 023105. doi: 10.1088/1674-4926/44/2/023105
  12. Saharan, S.; Yadav, B.; Grover, A.; Saini, S. Fabrication Methods for Bio-MEMS. Advances in MEMS and Microfluidic Systems; IGI Global, 2023, pp. 210-227. doi: 10.4018/978-1-6684-6952-1.ch011
  13. Avila-Sierra, A.; Moreno, J.A.; Goode, K.; Zhu, T.; Fryer, P.J.; Taylor, A.; Zhang, Z.J. Effects of structural and chemical properties of surface coatings on the adsorption characteristics of proteins. Surf. Coat. Tech., 2023, 452, 129054. doi: 10.1016/j.surfcoat.2022.129054
  14. Sujan, K.B.; Shanmuganantham, T. Bio-MEMS cantilever sensor design and analysis for detecting multiple diseases. 2017IEEE International Conference on Circuits and Systems (ICCS), , pp. 206-210. doi: 10.1109/ICCS1.2017.8325991
  15. Agarwal, D.K.; Nandwana, V.; Henrich, S.E.; Josyula, V.P.V.N.; Thaxton, C.S.; Qi, C.; Simons, L.M.; Hultquist, J.F.; Ozer, E.A.; Shekhawat, G.S.; Dravid, V.P. Highly sensitive and ultra-rapid antigen-based detection of SARS-CoV-2 using nanomechanical sensor platform. Biosens. Bioelectron., 2022, 195, 113647. doi: 10.1016/j.bios.2021.113647 PMID: 34583103
  16. Agarwal, D.K.; Prasad, A.; Vinchurkar, M.; Gandhi, S.; Prabhakar, D.; Mukherji, S.; Rao, V.R. Detection of heart-type fatty acid-binding protein (h-FABP) using piezoresistive polymer microcantilevers functionalized by a dry method. Appl. Nanosci., 2018, 8(5), 1031-1042. doi: 10.1007/s13204-018-0723-y
  17. Lavrik, N.V.; Sepaniak, M.J.; Datskos, P.G. Cantilever transducers as a platform for chemical and biological sensors. Rev. Sci. Instrum., 2004, 75(7), 2229-2253. doi: 10.1063/1.1763252
  18. Agarwal, D.K.; Kushagra, A.; Ashwin, M.; Shukla, A.S.; Palaparthy, V. Sensitive detection of cardiac troponin-I protein using fabricated piezoresistive microcantilevers by a novel method of asymmetric biofunctionalization. Nanotechnology, 2020, 31(11), 115503. doi: 10.1088/1361-6528/ab5a18 PMID: 31751958
  19. Jainish, P.; Prittesh, P. Biosensors and biomarkers: promising tools for cancer diagnosis. Int. J. Biosens. Bioelectron., 2017, 3(4), 00072.
  20. Agarwal, D.K.; Hunt, A.C.; Shekhawat, G.S.; Carter, L.; Chan, S.; Wu, K.; Dravid, V.P. Rapid and sensitive detection of antigen from SARS-CoV-2 variants of concern by a multivalent minibinder-functionalized nanomechanical sensor. Anal. Chem., 2022, 94(23)
  21. Kharati, M.; Foroutanparsa, S.; Rabiee, M.; Salarian, R.; Rabiee, N.; Rabiee, G. Early diagnosis of multiple sclerosis based on optical and electrochemical biosensors: Comprehensive perspective. Curr. Anal. Chem., 2020, 16(5), 557-569. doi: 10.2174/1573411014666180829111004
  22. Rigo, A.A.; Cezaro, A.M.D.; Muenchen, D.K.; Martinazzo, J.; Manzoli, A.; Steffens, J.; Steffens, C. Heavy metals detection in river water with cantilever nanobiosensor. J. Environ. Sci. Health B, 2020, 55(3), 239-249. doi: 10.1080/03601234.2019.1685318 PMID: 31680618
  23. Rotake, D.; Darji, A.D. Heavy metal ion detection in water using MEMS based sensor. Mater. Today Proc., 2018, 5(1), 1530-1536. doi: 10.1016/j.matpr.2017.11.242
  24. Zhao, J.; Wang, L.; Fu, D.; Zhao, D.; Wang, Y.; Yuan, Q.; Zhu, Y.; Yang, J.; Yang, F. Gold nanoparticles amplified microcantilever biosensor for detecting protein biomarkers with high sensitivity. Sens. Actuators A Phys., 2021, 321, 112563. doi: 10.1016/j.sna.2021.112563
  25. Li, C.; Zhang, M.; Zhang, Z.; Tang, J.; Zhang, B. Microcantilever aptasensor for detecting epithelial tumor marker Mucin 1 and diagnosing human breast carcinoma MCF-7 cells. Sens. Actuators B Chem., 2019, 297, 126759. doi: 10.1016/j.snb.2019.126759
  26. Zhang, Y.; Shi, F.; Zhang, C.; Sheng, X.; Zhong, Y.; Chong, H. Detection of avian influenza virus H9N2 based on self-driving and self-sensing microcantilever piezoelectric sensor. Chin. Chem. Lett., 2022.
  27. Fathy, J.; Lai, Y. A V-Shaped microcantilever sensor based on a gap method for real-time detection of E. coli bacteria. Biosensors (Basel), 2022, 12(4), 194. doi: 10.3390/bios12040194 PMID: 35448254
  28. Zhu, Z.; He, J.; Jia, X.; Jiang, J.; Bai, R.; Yu, X.; Lv, L.; Fan, R.; He, X.; Geng, J.; You, R.; Dong, Y.; Qiao, D.; Lee, K.B.; Smith, G.W.; Dong, C. MicroRNA-25 functions in regulation of pigmentation by targeting the transcription factor MITF in alpaca (Lama pacos) skin melanocytes. Domest. Anim. Endocrinol., 2010, 38(3), 200-209. doi: 10.1016/j.domaniend.2009.10.004 PMID: 20036482
  29. Miettinen, M.; Fernandez, M.; Franssila, K.; Gatalica, Z.; Lasota, J.; Sarlomo-Rikala, M. Microphthalmia transcription factor in the immunohistochemical diagnosis of metastatic melanoma: comparison with four other melanoma markers. Am. J. Surg. Pathol., 2001, 25(2), 205-211. doi: 10.1097/00000478-200102000-00008 PMID: 11176069
  30. Katta, M.; Sandanalakshmi, R. Simultaneous tropical disease identification with PZT-5H piezoelectric material including molecular mass biosensor microcantilever collection. Sens. Biosensing Res., 2021, 32, 100413. doi: 10.1016/j.sbsr.2021.100413
  31. Van Eysden, C.A.; Sader, J.E. Resonant frequencies of a rectangular cantilever beam immersed in a fluid. J. Appl. Phys., 2006, 100(11), 114916. doi: 10.1063/1.2401053
  32. Elmer, F.J.; Dreier, M. Eigenfrequencies of a rectangular atomic force microscope cantilever in a medium. J. Appl. Phys., 1997, 81(12), 7709-7714. doi: 10.1063/1.365379
  33. Green, C.P.; Sader, J.E. Torsional frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys., 2002, 92(10), 6262-6274. doi: 10.1063/1.1512318
  34. Looker, J.R.; Sader, J.E. Flexural resonant frequencies of thin rectangular cantilever plates. J. Appl. Mech., 2008, 75(1) doi: 10.1115/1.2745377
  35. Sevim, S.; Ozer, S.; Jones, G.; Wurzel, J.; Feng, L.; Fakhraee, A.; Shamsudhin, N.; Ergeneman, O.; Pellicer, E.; Sort, J.; Pané, S.; Nelson, B.J.; Torun, H.; Lühmann, T. Nanomechanics on FGF-2 and heparin reveal slip bond characteristics with pH dependency. ACS Biomater. Sci. Eng., 2017, 3(6), 1000-1007. doi: 10.1021/acsbiomaterials.6b00723 PMID: 33429571
  36. Müller, M.; Schimmel, T.; Häußler, P.; Fettig, H.; Müller, O.; Albers, A. Finite element analysis of V-shaped cantilevers for atomic force microscopy under normal and lateral force loads. Surf. Interface Anal., 2006, 38(6), 1090-1095.
  37. Hosseini, R.; Hamedi, M. Resonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester. J. Comput. Appl. Res. Mech. Eng., 2016, 6(1), 65-73. JCARME
  38. BRUKER AFM PROBS (MLCT). Available from: https://www.brukerafmprobes.com/p-3444-mlct.aspx
  39. Microphthalmia Transcription Factor (MiTF) (C5/D5) Mouse Monoclonal Antibody. Cell Marque. Available from: https://www.cellmarque.com/antibodies/CM/2024/Microphthalmia-Transcription-Factor-MiTF_C5-D5
  40. SinoBiology. MITF protein overview: sequence, structure, function and protein interaction., Available from: https://www.sinobiologi-cal.com/resource/mitf/proteins
  41. Veigas, B.; Matias, A.; Calmeiro, T.; Fortunato, E.; Fernandes, A.R.; Baptista, P.V. Antibody modified gold nanoparticles for fast colorimetric screening of rheumatoid arthritis. Analyst (Lond.), 2019, 144(11), 3613-3619. doi: 10.1039/C9AN00319C PMID: 31070614
  42. Binnig, G.; Quate, C.F.; Gerber, C. Atomic force microscope. Phys. Rev. Lett., 1986, 56(9), 930-933. doi: 10.1103/PhysRevLett.56.930 PMID: 10033323
  43. Gopal, S.; Chiappini, C.; Armstrong, J.P.K.; Chen, Q.; Serio, A.; Hsu, C.C.; Meinert, C.; Klein, T.J.; Hutmacher, D.W.; Rothery, S.; Stevens, M.M. Immunogold FIB-SEM: Combining volumetric ultrastructure visualization with 3d biomolecular analysis to dissect cell–environment interactions. Adv. Mater., 2019, 31(32), 1900488. doi: 10.1002/adma.201900488 PMID: 31197896
  44. Guo, R.; Franco-Palacios, M.; Russell, M.; Goddard, L.; Hassell, L.; Gillies, E.; Fung, K.M. Micropthalmia transcription factor (MITF) as a diagnostic marker for metastatic melanomas negative for other melanoma markers. Int. J. Clin. Exp. Pathol., 2013, 6(8), 1658-1664. PMID: 23923085
  45. Louarn, G.; Cuenot, S. Finite element modelling of micro-cantilevers used as chemical sensors. , arXiv preprint arXiv:0904.3999.2009
  46. Murthy, K.S.N.; Prasad, G.R.K.; Saikiran, N.L.N.V.; Manoj, T.V.S. Design and simulation of MEMS biosensor for the detection of tuberculosis. Indian J. Sci. Technol., 2016, 9(31), 31. doi: 10.17485/ijst/2016/v9i31/90638

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers