Topological Defects in Aggregation of the C60 Fullerene in the Isotactic Polypropylene Matrix

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Basing on the data of small-angle neutron scattering for the nanocomposite composed of fullerene C60 (16.5 wt. %) in the matrix of isotactic polypropylene, we received information on clusterization of nanoparticles and defined their geometric parameters and dimensionality. In this paper, we propose interpretation of particle aggregation possessing the properties of surface fractal in the size range up to 80 nm observed using small-angle neutron scattering method. Basing on the well-known theories of defect structures of a fullerene molecule C60 in non-Euclidean metrics, in particular, of disclinations and monopole in two-dimensional spherical Gödel space—time, we formulate a lattice version for the action of monopole gas, in which with the lattice Monte Carlo method, using abelian projection, we estimate the energy of monopole currents at different monopole concentrations. In frames of the proposed model, it is possible to calculate fractal properties of the fullerene C60 in a polymer composite and also to interpret evolution of disclinations.

作者简介

L. Elnikova

National Research Center “Kurchatov Institute”; Southwest State University

编辑信件的主要联系方式.
Email: elnikova@itep.ru
俄罗斯联邦, Moscow, 117218; Kursk, 305040

A. Ozerin

N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences

Email: elnikova@itep.ru
俄罗斯联邦, Moscow, 117393

V. Shevchenko

N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences

Email: shev@ispm.ru
俄罗斯联邦, Moscow, 117393

P. Nedorezova

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: elnikova@itep.ru
俄罗斯联邦, Moscow, 119991

O. Palaznik

N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences

Email: elnikova@itep.ru
俄罗斯联邦, Moscow, 119991

A. Ponomarenko

N.S. Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences

Email: elnikova@itep.ru
俄罗斯联邦, Moscow, 117393

V. Skoi

Joint Institute for Nuclear Research; Moscow Institute of Physics and Technology

Email: elnikova@itep.ru
俄罗斯联邦, Dubna, 141980; Dolgoprudny, 141701

A. Kuklin

Joint Institute for Nuclear Research; Moscow Institute of Physics and Technology

Email: alexander.iw.kuklin@gmail.com
俄罗斯联邦, Dubna, 141980; Dolgoprudny, 141701

参考

  1. Dresselhaus M.S., Dresselhaus G., Eklund P.C. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications, San Diego, California: Academic Press, 1996. 965 p.
  2. Elnikova L.V., Ozerin A.N., Shevchenko V.G., Nedorezova P.M., Ponomarenko A.T., Skoi V.V., Kuklin A.I. // Fullerenes, Nanotubes and Carbon Nanostructures. 2021. V. 29. Iss. 10. P. 783. https://doi.org/10.1080/1536383X.2021.1896496
  3. Polshchikov S.V., Nedorezova P.M., Komkova O.M., Klyamkina A.N., Shchegolikhin A.N., Krasheninnikov V.G., Aladysheva A.M., Shevchenko V.G., Muradyan V.E. // Nanotechnologies in Russia. 2014. V. 9. № 3–4. P. 175. https://doi.org/10.1134/S1995078014020128
  4. Shevchenko V.G., Polshchikov S.V., Nedorezova P.M., Klyamkina A.N., Aladyshev A.M., Chvalun S.N. // Polymer Composites. 2015. V. 36. Iss. 6. P. 1006. https://doi.org/10.1002/pc.23447
  5. Török G., Lebedev V.T., Cser L. // Phys. Solid State. 2002. V. 44. № 3. P. 572.
  6. Aksenov V.L., Tropin T.V., Avdeev M.V., Priezzhev V.B., Schmelzer J.W.P. // Phys. Particles Nuclei. 2005. V. 36. № 1. P. 52.
  7. Avdeev M.V., Khokhryakov A.A., Tropin T.V., Andrievsky G.V., Klochkov V.K., Derevyanchenko L.I., Rosta L., Garamus V.M., Priezzhev V.B., Korobov M.V., Aksenov V.L. // Langmuir. 2004. V. 20. P. 4363. https://doi.org/10.1021/la0361969
  8. Bokare A.D., Patnaik A. // J. Chem. Phys. 2003. V. 119. № 8. P. 4529. https://doi.org/10.1063/1.1594177
  9. Voronin D.P., Buchelnikov A.S., Kostjukov V.V., Khrapatiy S.V., Wyrzykowski D., Piosik J., Prylutskyy Yu I., Ritter U., Evstigneev M.P. // J. Chem. Phys. 2014. V. 140. P. 104909. https://doi.org/10.1063/1.4867902
  10. Peidys D.A., Mosunov A.A., Mykhina Yu.V., Prylutskyy Yu.I., Evstigneev M.P. // Chem. Phys. Lett. 2020. V. 742. P. 137161. https://doi.org/10.1016/j.cplett.2020.137161
  11. Eletskii A.V., Okun M.V., Smirnov B.M. // Physica Scripta. 1997. V. 55. P. 363.
  12. Безмельницын В.Н., Елецкий А.В., Окунь М.В. // УФН. 1998. Т. 168. № 11. С. 1195. https://doi.org/10.3367/UFNr.0168.199811b.1195
  13. Liu H., Lin Zh., Zhigilei L.V., Reinke P. // J. Phys. Chem. C. 2008. V. 112. P. 4687. https://doi.org/10.1021/jp0775597
  14. Sundqvist B. // Adv. Phys. 1999. V. 48. № 1. P. 1. http://dx.doi.org/10.1080/000187399243464
  15. Garcia G.Q., Cavalcante E., de M. Carvalho A.M., Furtado C. // Eur. Phys. J. Plus. 2017. V. 132. P. 183. https://doi.org/10.1140/epjp/i2017-11457-1
  16. Kochetov E.A., Osipov V.A. // J. Phys. A: Math. Gen. 1999. V. 32. P. 1961.
  17. Pudlak M., Pincak R., Osipov V.A. // Phys. Rev. A. 2007. V. 75. P. 065201. https://doi.org/10.1103/PhysRevA.75.065201
  18. Pudlak M., Pincak R., Osipov V.A. // Phys. Rev. A. 2006. V. 74. P. 235435.
  19. Chancey C.C., O’Brien M.C.M. The Jahn-Teller Effect in С60 and Other Icosahedral Complexes. New Jersey, Prinseton: Univ. Press, 1997. 204 p.
  20. Кузьмин А.В. Структурные аспекты эффекта Яна-Теллера в кристаллах анионных комплексов фуллеренов и фталоцианинов: Дис. кандидата ф.-м.н.: 01.04.07. Черноголовка, 2018. 170 с.
  21. González J., Guinea F., Vozmediano M.A.H. // Nucl. Phys. B. 1993. V. 406. P. 771.
  22. Gonzalez J., Guinea F., Vozmediano M.A.H. // Phys. Rev. Lett. 1992. V. 69. P. 172.
  23. Vozmediano M.A.H., de Juan F., Cortijo A. // J. Phys.: Conf. Ser. 2008. V. 129. P. 012001.
  24. Kroto H. // Rev. Mod. Phys. 1997. V. 69. P. 703.
  25. Kroto H.W., Heath J.R., O’Brien S.C., Curl R.F., Smalley R.E. // Nature. 1985. V. 318. P. 162.
  26. Cavalcante E., Carvalho J., Furtado C. // Eur. Phys. J. Plus. 2016. V. 131. P. 288. https://doi.org/10.1140/epjp/i2016-16288-x
  27. Катанаев М.О. // УФН. 2005. Т. 175. № 7. С. 705. https://doi.org/10.3367/UFNr.0175.200507b.0705
  28. Кадич А., Эделен Д. Калибровочная теория дислокаций и дисклинаций. М.: Мир, 1987. 166 с.
  29. Soloviev A.G., Solovjeva T.M., Ivankov O.I., Soloviov D.V., Rogachev A.V., Kuklin A.I. // J. Phys.: Conf. Ser. 2017. V. 848. P. 012020. https://doi.org/10.1088.1742-6596.848.1.012020
  30. Petoukhov M.V., Franke D., Shkumatov A.V., Tria G., Kikhney A.G., Gajda M., Gorba C., Mertens H.D., Konarev P.V., Svergun D.I. // J. Appl. Crystallogr. 2012. V. 45. P. 342. https://doi.org/10.1107/S0021889812007662
  31. Поляков А.М. Калибровочные поля и струны. Черноголовка: ИТФ им. Л.Д. Ландау, 1995. 308 с.
  32. Монастырский М.И. Топология калибровочных полей и конденсированных сред. М.: ПАИМС, 1995. 478 с.
  33. Kolesnikov D.V., Osipov V.A. // Europ. Phys. J. B. 2006. V. 49. P. 465. https://doi.org/10.1140/epjb/e2006-00087-y
  34. Frank F.C. // Phil. Mag. 1951. V. 42. № 331. P. 809.
  35. Zhan B.L., Wang C.Z., Chan C.T., Ho K.M. // Phys. Rev. B. 1993. V. 48. № 15. P. 11381.
  36. Поликарпов М.И. // УФН. 1995. Т. 165. № 6. С. 627.
  37. Chernodub M.N., Gubarev F.V. // JETP Lett. 1995. V. 62. № 2. P. 100.
  38. ’t Hooft G. // Nucl. Phys. B. 1981. V. 190. P. 455.
  39. Kronfeld A.S., Schierholz G., Wiese U.-J. // Nucl. Phys. B. 1987. V. 293. P. 461.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024