Manifestation of the hexatic phase in confined two-dimensional systems with circular symmetry

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Quasi-two-dimensional systems play an important role in the manufacture of various devices for the needs of nanoelectronics. Obviously, the functional efficiency of such systems depends on their structure, which can change during phase transitions under the influence of external conditions (for example, temperature). Until now, the main attention has been focused on the search for signals of phase transitions in continuous two-dimensional systems. One of the central issues is the analysis of the conditions for the nucleation of the hexatic phase in such systems, which is accompanied by the appearance of defects in the Wigner crystalline phase at a certain temperature. However, both practical and fundamental questions arise about the critical number of electrons at which the symmetry of the crystal lattice in the system under consideration will begin to break and, consequently, the nucleation of defects will start. The dependences of the orientational order parameter and the correlation function, which characterize topological phase transitions, as functions of the number of particles at zero temperature have been studied. The calculation results allows us to establish the precursors of the phase transition from the hexagonal phase to the hexatic one for N = 92, 136, 187, considered as an example.

全文:

受限制的访问

作者简介

E. Nikonov

Joint Institute for Nuclear Research; National Research University Higher School of Economics; Dubna State University

编辑信件的主要联系方式.
Email: e.nikonov@jinr.ru
俄罗斯联邦, 141980, Dubna; 119048, Moscow; 141980, Dubna

R. Nazmitdinov

Joint Institute for Nuclear Research; Dubna State University

Email: e.nikonov@jinr.ru
俄罗斯联邦, 141980, Dubna; 141980, Dubna

P. Glukhovtsev

Joint Institute for Nuclear Research; Dubna State University

Email: e.nikonov@jinr.ru
俄罗斯联邦, 141980, Dubna; 141980, Dubna

参考

  1. Bedanov V.M., Peeters F.M. // Phys. Rev. B. 1994. V. 49. № 4. P. 2667. https://doi.org/10.1103/PhysRevB.49.2667
  2. Koulakov A.A., Shklovskii B.I. // Phys. Rev. B. 1998. V. 57. № 4. P. 2352. https://doi.org/10.1103/PhysRevB.57.2352
  3. Mughal A., Moore M.A. // Phys. Rev. E. 2007. V. 76. Iss. 1. P. 011606. https://doi.org/10.1103/PhysRevE.76.011606
  4. Fortov V., Ivlev A., Khrapak S., Khrapak A., Morfill G. // Phys. Rep. 2005. V. 421. P. 1. http://dx.doi.org/10.1016/j.physrep.2005.08.007
  5. Soni V., Gόmez L.R., Irvine W.T.M. // Phys. Rev. X. 2018. V. 8. P. 011039. https://doi.org/10.1103/PhysRevX.8.011039
  6. Binks B.P., Horozov T.S. Colloidal Particles and Geometry in Condensed Matter Physics. Cambridge: Cambridge University Press, 2006. 503 р. http://dx.doi.org/10.1017/CBO9780511536670.002
  7. Leunissen M.E., van Blaaderen A., Hollingsworth A.D., Sullivan M.T., Chaikin P.M. // Proc. Natl. Acad. Sci. 2007. V. 104. № 8. P. 2585. https://doi.org/10.1073/pnas.0610589104
  8. Birman J.L., Nazmitdinov R.G., Yukalov V.I. // Phys. Rep. 2013. V. 526. P. 1. https://doi.org/https://doi.org/10.1016/j.physrep. 2012.11.005
  9. Wigner E.P. // Phys. Rev. 1934. V. 46. P. 1002. https://doi.org/10.1103/ PhysRev.46.1002
  10. Bonsall L., Maradudin A.A. // Phys. Rev. B. 1997. V. 15. P. 1959. https://doi.org/10.1103/PhysRevB.15.1959
  11. Nelson D.R. Defects and Geometry in Condensed Matter Physics. Cambridge: Cambridge University Press, 2002. 392 р.
  12. Рыжов В.Н., Тареева Е.Е., Фомин Ю.Д., Циок Е.Н. // УФН. 2017. Т. 187. № 9. С. 921. https://doi.org/10.3367/UFNe.2017. 06.038161
  13. Березинский В.Л. // ЖЭТФ. 1970. Т. 59. С. 900. https://doi.org/10.1103/PhysRevLett.39.1201
  14. Березинский В.Л. // ЖЭТФ. 1971. Т. 61. С. 1144.
  15. Kosterlitz J.M., Thouless D.J. // J. Phys. C. 1972. V. 5. Р. L124. https://doi.org/10.1088/0022-3719/6/7/010
  16. Kosterlitz J.M. // J. Phys. C. 1974. V. 7. P. 1046. http://dx.doi.org/10.1088/ 0022-3719/7/6/005
  17. Gann R.C., Chakravarty S., Chester G.V. // Phys. Rev. B. 1979. V. 20. P. 326. https://doi.org/10.1103/PhysRevB.20.326
  18. Kong M., Partoens B., Peeters F.M. // Phys. Rev. E. 2003. V. 67. P. 021608. https://doi.org/10.1103/PhysRevE.67.021608
  19. Cerkaski M., Nazmitdinov R.G., Puente A. // Phys. Rev. E. 2015. V. 91. P. 032312. https://doi.org/10.1103/PhysRevE.91.032312
  20. Nazmitdinov R.G., Puente A., Cerkaski M., Pons M. // Phys. Rev. E. 2017. V. 95. P. 042603. https://doi.org/10.1103/PhysRevE.95.042603
  21. Никонов Э.Г., Назмитдинов Р.Г., Глуховцев П.И. // Компьютерные исследования и моделирование. 2022. Т. 14. № 3. С. 609. https://doi.org/10.20537/ 2076-7633-2022-14-3-609-618
  22. Nikonov E.G., Nazmitdinov R.G., Glukhovtsev P.I. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2023. V. 17. № 1. Р. 235. https://doi.org/10.1134/S1027451023010354
  23. Frenkel D., Smit B. Understanding Molecular Simulation: From Algorithms to Applications. Academic Press, 2001. 661 р.
  24. Halperin B.I., Nelson D.R. // Phys. Rev. Lett. 1978. V. 41. P. 121. https://doi.org/10.1103/PhysRevLett.41.121
  25. Ландау Л.Д. // ЖЭТФ. 1973. Т. 7. С. 627.
  26. Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Физматлит, 2003. 264 с.
  27. Nelson D.R., Halperin B.I. // Phys. Rev. B. 1979. V. 19. P. 2457. https://doi.org/10.1103/PhysRevB.19.2457
  28. Young A.P. // Phys. Rev. B. 1979. V. 19. P. 1855. https://doi.org/10.1103/PhysRevB.19.1855
  29. Fortune S. // Algorithmica. 1987. V. 2. P. 153. https://doi.org/10.1007/ BF01840357
  30. Peeters F.M. // Two-Dimensional Electron Systems / Ed. Andrei E.Y. Dordrecht: Kluwer Academic, 1997. P. 17.
  31. Lai Y.-J., I Lin // Phys. Rev. E. 1999. V. 60. P. 4743. https://doi.org/10.1103/PhysRevE.60.4743

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Distribution of defects with a nonzero orientation parameter of order for a system of point electrons in a circular region with an infinite rigid boundary. The dark dots represent electrons with a parameter of the order Ψ6(rk) = 0, the light ones represent electrons with a nonzero parameter of the order.

下载 (257KB)
3. Fig. 2. Distribution of the topological charge for the number of particles N: a – 92; b – 136; c – 187.

下载 (804KB)
4. Fig. 3. Distribution of the orientation order of the bond ψ6 (5) for the number of particles N: a – 92; b – 136; c – 187.

下载 (144KB)
5. Fig. 4. Orientation correlation function G6(r) (9) for the number of particles N: a – 92; b – 136; c – 187.

下载 (150KB)

版权所有 © Russian Academy of Sciences, 2024