Change in the charge state of MOS structures under radiation and high-field injection at constant voltage

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The features of radiation-induced positive charge accumulation in the gate dielectric film under high-field injection of electrons at the constant voltage are studied. The conditions are determined, under which the current injection mode can be used to increase the dose sensitivity of MOS (metal–oxide–semiconductor) and RADFET (Radiation sensing Field Effect Transistor) sensors. The model describing physical effects taking place in the gate dielectric and at the MOS structure interfaces under concurrent influence of radiation and high-field injection of electrons at constant voltage are improved. It is shown that the absorbed radiation dose at constant voltage on the sample can be calculated from changes in the current density of high-field electron injection. This dose can increase by several orders of magnitude due to the accumulation of radiation-induced positive charge in the gate dielectric. The influence of radiation intensity on the accumulation of radiation-induced positive charge in the gate dielectric of MOS sensors is determined.

Texto integral

Acesso é fechado

Sobre autores

D. Andreev

Bauman Moscow State Technical University

Autor responsável pela correspondência
Email: dmitrii_andreev@bmstu.ru
Rússia, Kaluga Branch, Kaluga

S. Kornev

Bauman Moscow State Technical University

Email: dmitrii_andreev@bmstu.ru
Rússia, Kaluga Branch, Kaluga

V. Andreev

Bauman Moscow State Technical University

Email: dmitrii_andreev@bmstu.ru
Rússia, Kaluga Branch, Kaluga

Bibliografia

  1. Yilmaz E., Kaleli B., Turan R. // Nucl. Instrum. Methods Phys. Res. B. 2007. V. 264. P. 287. http://doi.org/10.1016/j.nimb.2007.08.081
  2. Kahraman A., Yilmaz E., Aktag A., Kaya S. // IEEE Trans. Nucl. Sci. 2016. V. 63. № 2. P. 1284. http://doi.org/10.1109/TNS.2016.2524625
  3. Aktağ A., Yilmaz E., Mogaddam N.A.P., Aygün G., Cantas A., Turan R. // Nucl. Instrum. Methods Phys. Res. B. 2010. V. 268. № 22. P. 3417. http://doi.org/10.1016/j.nimb.2010.09.007
  4. Yilmaz E., Turan R. // Sensors Actuators. A. 2008. V. 141. № 1. Р. 1. http://doi.org/10.1016/j.sna.2007.07.001
  5. Holmes-Siedle A., Adams L. // Radiat. Phys. Chem. 1986. V. 28. P. 235. http://doi.org/10.1016/1359-0197(86)90134-7
  6. Pejović M.M. // Radiat. Phys. Chem. 2017. V. 130. P. 221. http://doi.org/10.1016/j.radphyschem.2016.08.027
  7. Ristic G.S., Vasovic N.D., Kovacevic M., Jaksic A.B. // Nucl. Instrum. Methods Phys. Res. B. 2011. V. 269. P. 2703. http://doi.org/10.1016/j.nimb.2011.08.015
  8. Ristic G.S., Ilic S.D., Andjelkovic M.S., Duane R., Palma A.J., Lalena A.M., Krstic M.D., Jaksic A.B. // Nuclear Instrum. Methods Phys. Res. A. 2022. V. 1029. P. 166473. http://doi.org/10.1016/j.nima.2022.166473
  9. Lipovetzky J., Holmes–Siedle A., Inza M.G., Carbonetto S., Redin E., Faigon A. // IEEE Trans. Nucl. Sci. 2012. V. 59. P. 3133. http://doi.org/10.1109/TNS.2012.2222667
  10. Siebel O.F., Pereira J.G., Souza R.S., Ramirez-Fernandez F.J., Schneider M.C., Galup-Montoro C. // Radiat. Measur. 2015. V. 75. P. 53. http://doi.org/10.1016/j.radmeas.2015.03.004
  11. Kulhar M., Dhoot K., Pandya A. // IEEE Trans. Nucl. Sci. 2019. V. 66. P. 2220. http://doi.org/ 10.1109/TNS.2019.2942955
  12. Camanzi B., Holmes-Siedle A.G. // Nature Mater. 2008. V. seven. P. 343. http://doi.org/ 10.1038/nmat2159
  13. Oldham T.R., McLean F.B. // IEEE Trans. Nucl. Sci. 2003. V. 50. P. 483. http://doi.org/10.1109/TNS.2003.812927
  14. Schwank J.R., Shaneyfelt M.R., Fleetwood D.M., Felix J.A., Dodd P.E., Paillet P., Ferlet-Cavrois V. // IEEE Trans. Nucl. Sci. 2008. V. 55. P. 1833. http://doi.org/10.1109/TNS.2008.2001040
  15. Lipovetzky J., Redin E.G., Faigon A. // IEEE Trans. Nucl. Sci. 2007. V. 54. P. 1244. http://doi.org/10.1109/TNS.2007.895122
  16. Peng L., Hu D., Jia Y., Wu Y., An P., Jia G. // IEEE Trans. Nucl. Sci. 2017. V. 64. P. 2633. http://doi.org/10.1109/TNS.2017.2744679
  17. Andreev D.V., Bondarenko G.G., Andreev V.V., Stolyarov A.A. // Sensors. 2020. V. 20. P. 2382. http://doi.org/10.3390/s20082382
  18. Andreev V.V., Maslovsky V.M., Andreev D.V., Stolyarov A.A. // Proc. SPIE. 2019. V. 11022. P. 1102207. http://doi.org/10.1117/12.2521985
  19. Andreev D.V., Bondarenko G.G., Andreev V.V. // J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2023. V. 17. P. 48. http://doi.org/10.1134/S1027451023010056
  20. Lai S.K. // J. Appl. Phys. 1983. V. 54. P. 2540. http://doi.org/10.1063/1.332323
  21. Arnold D., Cartier E., DiMaria D.J. // Phys. Rev. B. 1994. V. 49. P. 10278. http://doi.org/10.1103/PhysRevB.49.10278
  22. Strong A.W., Wu E.Y., Vollertsen R., Sune J., Rosa G.L., Rauch S.E., Sullivan T.D. Reliability Wearout Mechanisms in Advanced CMOS Technologies. Wiley-IEEE Press, 2009. 624 p.
  23. Palumbo F., Wen C., Lombardo S., Pazos S., Aguirre F., Eizenberg M., Hui F., Lanza M. // Adv. Funct. Mater. 2019. V. 29. P. 1900657. http://doi.org/10.1002/adfm.201900657

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Band diagram of a MOS structure under radiation irradiation and high-field electron injection: 1 — creation of electron-hole pairs by radiation; 2 — hole transport; 3 — hole capture in traps; 4 — high-field electron injection; 5 — annihilation of part of the holes by injected electrons; 6 — transport and heating of injected electrons; 7 — thermalization of hot electrons with hole creation.

Baixar (101KB)
3. Fig. 2. Dose dependence of the shift in injection current density while maintaining a constant voltage on the MOS sensor (V0 = 65.5 V), providing an initial current density of 10 nA/cm2 at different radiation intensities: 1 - 10; 2 - 100 rad/s.

Baixar (72KB)
4. Fig. 3. Theoretical (solid curves) and experimental (dots) dose dependences of the density of radiation-induced positive charge accumulated in the gate dielectric of a MOS structure under irradiation with α-particles: 0 — in the absence of voltage on the gate; 1, 2 — at a gate voltage of 65.5 V and a radiation intensity of 10 (1), 100 rad/s (2).

Baixar (72KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025