Vortex Motion on the Surface of Shallow and Deep Water

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The attenuation of vortex motion on the surface of shallow and deep water is investigated. The vortex flow was formed by two mutually perpendicular waves excited by plungers at a frequency of 6 Hz (wavelength λ = 5.6 cm) on the surface of water measuring 70 × 70 cm and depth h. After reaching a stationary state in the vortex system, the wave pumping was switched off, and the attenuation of the surface flow was recorded. On the surface of shallow water, λ/2π ≈ h, when the characteristic size of the vortices L exceeds the depth of the liquid, L >> h, the time dependence of the energy of the vortex flow Е(t) is described by an exponential function at all pumping levels, and the dependence of the enstrophy Ф(t) = Ω2(t) has an exponential dependence only in the range of wave vectors 0–0.3 см–1. On the surface of deep water λ/2π < h, Lh dependence Е(t) and Ф(t) are far from exponential in all ranges of wave numbers. At high pumping levels, the dependencies Е(t) and Ф(t) are nonmonotonic, which can be attributed to the influence of volumetric flows.

Авторлар туралы

A. Poplevin

Osipyan Institute of Solid State Physics of the RAS; Landau Institute for Theoretical Physics of the RAS

Хат алмасуға жауапты Автор.
Email: faraldos@issp.ac.ru
Ресей, Chernogolovka; Chernogolovka

A. Levchenko

Osipyan Institute of Solid State Physics of the RAS; Landau Institute for Theoretical Physics of the RAS

Email: faraldos@issp.ac.ru
Ресей, Chernogolovka; Chernogolovka

A. Lichter

Tatishchev Astrakhan State University

Email: faraldos@issp.ac.ru
Ресей, Astrakhan

S. Filatov

Osipyan Institute of Solid State Physics of the RAS; Landau Institute for Theoretical Physics of the RAS

Email: faraldos@issp.ac.ru
Ресей, Chernogolovka; Chernogolovka

L. Mezhov-Deglin

Osipyan Institute of Solid State Physics of the RAS

Email: faraldos@issp.ac.ru
Ресей, Chernogolovka

Әдебиет тізімі

  1. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика, т. 6, Гидродинамика. М.: Физматлит, 2003.
  2. Francois N., Xia H., Punzmann H. et al. // Physical Review X. 2014. V. 4. No. 2. P. 021021. https://doi.org/10.1103/PhysRevX.4.021021
  3. Francois N., Xia H., Punzmann H., Shats M. // Physical Review Letters. 2013. V. 110. No. 19. P. 194501. https://doi.org/10.1103/PhysRevLett.110.194501
  4. Filatov S.V., Brazhnikov M.Yu., Levchenko A.A. // JETP Letters, 2015, V. 102, No. 7, pp. 432–436. https://doi.org/10.1134/S0021364015190054
  5. Filatov S.V., Parfenyev V.M., Vergeles S.S., Brazhni-kov M.Yu., Levchenko A.A., Lebedev V.V. // Phys. Rev. Lett. 2016, V. 116. P. 5. https://doi.org/10.1103/PhysRevLett.116.054501
  6. Filatov S.V., Khramov D.A. & Levchenko A.A. // JETP Letters, 2017, V. 106, pp. 330–335. https://doi.org/10.1134/S0021364017170076
  7. Филатов С.В., Поплевин А.В. и др. // Поверхность. Рентгеновские, синхротронные и нейтронные исследования, 2022, No. 12, стр. 53–64. https://doi.org/10.31857/S1028096022120123
  8. Parfenyev V.M., Filatov S.V., Brazhnikov M.Yu., Vergeles S.S., Levchenko A.A. // Phys. Rev. Fluids. 2019. V. 4. P. 114701. https://doi.org/10.1103/PhysRevFluids.4.114701
  9. Thielicke W., Stamhuis E. // J. Open Research Software. 2014. V. 2.No 1. P.30. https://doi.org/10.5334/jors.bl
  10. Filatov S.V., Aliev S.A., Levchenko A.A., Khramov D.A. // JETP Letters, 2016, V. 104, No. 10, pp. 702–708. https://doi.org/10.1134/S0021364016220082
  11. Kolokolov I.V., Lebedev V.V. & Tumakova M.M. // JETP, 2023, V. 136, No. 6, pp. 785–794. https://doi.org/10.1134/S1063776123060122
  12. Orlov A.V., Brazhnikov M.Yu. & Levchenko A.A. // JETP Letters, 2018, V. 107, No. 3, pp. 157–162. https://dx.doi.org/10.1134/S0021364018030128
  13. Xia H., Shats M. & Falkovich G. // Phys. Fluids, 2009, V. 21, 125101. https://doi.org/10.1063/1.3275861

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024