Intense Laser Sources of Gamma Radiation and Neutrons Based on High-Current Beams of Super-Ponderomotive Electrons
- Authors: Andreev N.E.1,2, Umarov I.R.1,2, Popov V.S.1,2
-
Affiliations:
- Joint Institute for High Temperatures RAS
- Moscow Institute of Physics and Technology (State University)
- Issue: No 8 (2023)
- Pages: 3-10
- Section: Articles
- URL: https://archivog.com/1028-0960/article/view/664515
- DOI: https://doi.org/10.31857/S1028096023070026
- EDN: https://elibrary.ru/TDUUTJ
- ID: 664515
Cite item
Abstract
Intense beams of photons and neutrons in the MeV energy range are effective tools in many areas of research, such as diagnostics of matter in extreme states, nuclear physics and materials science, as well as in medical and biophysical applications. A concept is presented for creating efficient sources of γ-radiation and neutrons, based on the generation of relativistic electrons in the direct laser acceleration mode during the interaction between a laser pulse with an intensity of 1019 W/cm2 and extended plasma with a density close to critical.
About the authors
N. E. Andreev
Joint Institute for High Temperatures RAS; Moscow Institute of Physics and Technology (State University)
Author for correspondence.
Email: andreev@ras.ru
Russia, 125412, Moscow; Russia, 141701, Dolgoprudny
I. R. Umarov
Joint Institute for High Temperatures RAS; Moscow Institute of Physics and Technology (State University)
Email: andreev@ras.ru
Russia, 125412, Moscow; Russia, 141701, Dolgoprudny
V. S. Popov
Joint Institute for High Temperatures RAS; Moscow Institute of Physics and Technology (State University)
Email: andreev@ras.ru
Russia, 125412, Moscow; Russia, 141701, Dolgoprudny
References
- Wang T., Ribeyre X., Gong Z., Jansen O., d’Humières E., Stutman D., Toncian T., Arefiev A. // Phys. Rev. Appl. 2020. V. 13. № 5. P. 054024. https://doi.org/10.1103/PhysRevApplied.13.054024
- Norreys P.A., Santala M., Clark E. et al. // Phys. Plasmas. 1999. V. 6. P. 2150. https://doi.org/10.1063/1.873466
- Hatchett S.P., Brown C.G., Cowan T.E. et al. // Phys. Plasmas. 2000. V. 7. № 5. P. 2076. https://doi.org/10.1063/1.874030
- Gu Y.-J., Jirka M., Klimo O., Weber S. // Matt. Radiat. Extremes. 2019. V. 4. P. 064403. https://doi.org/10.1063/1.5098978
- Pomerantz I., McCary E., Meadows A.R., Arefiev A., Bernstein A.C., Chester C., Cortez J., Donovan M.E., Dyer G., Gaul E.W., Hamilton D., Kuk D., Lestrade A.C., Wang C., Ditmire T., Hegelich B.M. // Phys. Rev. Lett. 2014. V. 113. № 18. P. 184801. https://doi.org/10.1103/PhysRevLett.113.184801
- Günther M.M., Rosmej O.N., Tavana P., Gyrdymov M., Skobliakov A., Kantsyrev A., Zähter S., Borisenko N.G., Pukhov A., Andreev N.E. // Nature Commun. 2022. V. 13. № 1. P. 170. https://doi.org/10.1038/s41467-021-27694-7
- Недорезов В.Г., Рыкованов С.Г., Савельев А.Б. // Успехи физических наук. 2021. Т. 191. № 12. С. 1281. https://doi.org/10.3367/UFNr.2021.03.038960
- Ravasio A., Koenig M., Le Pape S. et al. // Phys. Plasmas. 2008. V. 15. № 6. P. 060701. https://doi.org/10.1063/1.2928156
- Li K., Borm B., Hug F., Khaghani D., Löher B., Savran D., Tahir N.A., Neumayer P. // Laser and Particle Beams. 2014. V. 32. № 4. P. 631. https://doi.org/10.1017/S0263034614000652
- Negoita F., Roth M., Thirolf P.G. et al. // Roman. Rep. Phys. 2016. V. 68. P. S37.
- Habs D., Köster U. // Appl. Phys. B. 2010. V. 103. № 2. P. 501. https://doi.org/10.1007/s00340-010-4278-1
- Ma Z., Lan H., Liu W., Wu S., Xu Y., Zhu Z., Luo W. // Matt. Radiat. Extremes. 2019. V. 4. № 6. P. 064401. https://doi.org/10.1063/1.5100925
- Willingale L., Nilson P.M., Thomas A.G.R., Bulanov S.S., Maksimchuk A., Nazarov W., Sangster T.C., Stoeckl C., Krushelnick K. // Phys. Plasmas. 2011. V. 18. № 5. P. 056706. https://doi.org/10.1063/1.3563438
- Willingale L., Thomas A.G.R., Nilson P.M., Chen H., Cobble J., Craxton R.S., Maksimchuk A., Norreys P.A., Sangster T.C., Scott R.H.H., Stoeckl C., Zulick C., Krushelnick K. // New J. Phys. 2013. V. 15. № 2. P. 025023. https://doi.org/10.1088/1367-2630/15/2/025023
- Toncian T., Wang C., McCary E. et al. // Matt. Radiat. Extremes. 2016. V. 1. № 1. P. 82. https://doi.org/10.1016/j.mre.2015.11.001
- Pukhov A., Sheng Z.-M., Meyer-ter-Vehn J. // Phys. Plasmas. 1999. V. 6. № 7. P. 2847. https://doi.org/10.1063/1.873242
- Willingale L., Arefiev A.V., Williams G.J., Chen H., Dollar F., Hazi A. U., Maksimchuk A., Manuel M. J.-E., Marley E., Nazarov W., Zhao T. Z., Zulick C. // New J. Phys. 2018. V. 20. № 9. P. 093024. https://doi.org/10.1088/1367-2630/aae034
- Arefiev A.V., Khudik V.N., Robinson A.P.L., Shvets G., Willingale L., Schollmeier M. // Phys. Plasmas. 2016. V. 23. № 5. P. 056704. https://doi.org/10.1063/1.4946024
- Khudik V., Arefiev A., Zhang X., Shvets G. // Phys. Plasmas. 2016. V. 23. P. 103108. https://doi.org/10.1063/1.4964901
- Pugachev L., Andreev N., Levashov P., Rosmej O. // Nucl. Instrum. Methods Phys. Res. A. 2016. V. 829. P. 88. https://doi.org/10.1016/j.nima.2016.02.053
- Rosmej O.N., Andreev N.E., Zaehter S., Zahn N., Christ P., Borm B., Radon T., Sokolov A., Pugachev L.P., Khaghani D., Horst F., Borisenko N.G., Sklizkov G., Pimenov V.G. // New J. Phys. 2019. V. 21. № 4. P. 043044. https://doi.org/10.1088/1367-2630/ab1047
- Rosmej O.N., Gyrdymov M., Günther M.M., Andreev N.E., Tavana P., Neumayer P., Zähter S., Zahn N., Popov V.S., Borisenko N.G., Kantsyrev A., Skobliakov A., Panyushkin V., Bogdanov A., Consoli F., Shen X.F., Pukhov A. // Plasma Phys. Controlled Fusion. 2020. V. 62. № 11. P. 115024. https://doi.org/10.1088/1361-6587/abb24e
- Andreev N., Popov V., Rosmej O., Kuzmin A., Shaykin A., Khazanov E., Kotov A., Borisenko N., Starodubtsev M., Soloviev A. // Quantum Electronics. 2021. V. 51. № 11. P. 1019. https://doi.org/10.1070/qel17648
- Rosmej O.N., Suslov N., Martsovenko D. et al. // Plasma Phys. Controlled Fusion. 2015. V. 57. № 9. P. 094001.
- Esarey E., Schroeder C.B., Leemans W.P. // Rev. Mod. Phys. 2009. V. 81. № 3. P. 1229. https://doi.org/10.1103/RevModPhys. 81.1229
- Gonsalves A.J., Nakamura K., Daniels J. et al. // Phys. Rev. Lett. 2019. V. 122. № 8. P. 084801. https://doi.org/10.1103/PhysRevLett.122.084801
- Pukhov A. // J. Plasma Phys. 1999. V. 61. № 3. P. 425. https://doi.org/10.1017/S0022377899007515
- Borisenko N.G., Akimova I.V., Gromov A.I., Khalenkov A.M., Merkuliev Y.A., Kondrashov V.N., Limpouch J., Kuba J., Krousky E., Masek K., Nazarov W., Pimenov V.G. // Fusion Sci. Technol. 2006. V. 49. № 4. P. 676. https://doi.org/10.13182/FST06-A1185
- Agostinelli S., Allison J., Amako K. et al. // Nucl. Instrum. Methods Phys. Res. A. 2003. V. 506. № 3. P. 250. https://doi.org/10.1016/S01689002(03)01368-8
- Stoyer M.A., Sangster T.C., Henry E.A., Cable M.D., Cowan T.E., Hatchett S.P., Key M., Moran M.J., Pennington D.M., Perry M.D., Phillips T.W., Singh M.S., Snavely R.A., Tabak M., Wilks S.C. // Rev. Sci. Instrum. 2001. V. 72. № 1. P. 767. https://doi.org/10.1063/1.1319355
- Spicer B.M. // Advances in Nuclear Physics. V. 2. N.Y.: Springer, 1969. P. 1. https://doi.org/10.1007/978-1-4684-8343-7_1
- Zerkin V., Pritychenko B. // Nucl. Instrum. Methods Phys. Res. A. 2018. V. 888. P. 31. https://doi.org/10.1016/j.nima.2018.01.045
- Koning A.J., Hilaire S., Duijvestijn M.C. // AIP Conf. Proc. 2005. V. 769. P. 1154.
Supplementary files
