Glucocorticoid receptor expression in the different cell types of the neonatal rat hippocampus and cortex

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Glucocorticoids (GC) are crucial regulator of organism homeostasis and function. Despite severe outcome glucocorticoid therapy in neonates is widely used antenataly for accelerating fetal lung maturation in cases of preterm birth. GC action mediated via glucocorticoid receptors – ligand activated transcription factors. Despite broad range of information concerning GR expression in the brain, not so much known about GR expression in the neonatal brain in aspects of cell specificity and identity. In this work we perform comparative study of GR expression together with panel of main neuronal and astrocytic cell markers in the neonatal rat brain. We immunohistochemically studied GR expression in the hippocampal CA1 field and enthorinal cortex together with cortical projection neuron markers – SATB2, NURR1; Calretenin – interneurons marker, and GFAP – astrocytic marker. The highest calocalization coefficients observed for GR with Calrtetenin. With projection neuron markers that are also transcription factors calocalization coefficients increased to the same values as for GR-Calretenin 6h after dexamethasone injection and GR were translocated to the nucleus. Our analysis showed that in the neonatal rat brain GR are more localized in neurons than in astocytes.

Толық мәтін

Рұқсат жабық

Авторлар туралы

D. Lanshakov

The Institute of Cytology and Genetics SB RAS; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: lanshakov@bionet.nsc.ru

Postgenomics Neurobiology Sector

Ресей, Novosibirsk; Novosibirsk

U. Drozd

The Institute of Cytology and Genetics SB RAS; Novosibirsk State University

Email: lanshakov@bionet.nsc.ru

Postgenomics Neurobiology Sector

Ресей, Novosibirsk; Novosibirsk

N. Dygalo

Novosibirsk State University; The Institute of Cytology and Genetics SB RAS

Email: lanshakov@bionet.nsc.ru

Functional Neurogenomics Laboratory

Ресей, Novosibirsk; Novosibirsk

Әдебиет тізімі

  1. Yudt M.R. and Cidlowski J.A. // Mol. Endocrin. 2002. V. 16. P. 1719–1726.
  2. Tronche F., Kellendonk C., Kretz O., Gass P., Anlag K., Orban P.C., Bock R., Klein R., and Schütz G. // Nat Genet. 1999. V. 23. P. 99–103.
  3. Kellendonk C., Tronche F., Reichardt H.M., and Schütz G. // J. Ster. Biochem. Mol. Biol. 1999. V. 69. P. 253–259.
  4. Kellendonk C., Gass P., Kretz O., Schütz G., and Tronche F. // Brain Res Bull. 2002. V. 57. P. 73–83.
  5. Doyle L.W., Ehrenkranz R.A., and Halliday H.L. // The Coch. Collab., ed., (Chichester, UK: John Wiley & Sons, Ltd, 2014), p. CD001145.pub3.
  6. Halliday H.L., Ehrenkranz R.A., and Doyle L.W. // The Coch. Collab., ed., (Chichester, UK: John Wiley & Sons, Ltd, 2009), p. CD001146.pub2.
  7. Nguon. K., Baxter M.G., and Sajdel‐Sulkowska E.M. // The Cerebell. 2005. V. 4. P. 112–122.
  8. Bhatt A.J., Feng Y., Wang J., Famuyide M., and Hersey K. // J. of Neurosci. Res. 2013. V. 91. P. 1191–1202.
  9. Holson R.R., Gough B., Sullivan P., Badger T., and Sheehan D.M. // Neurotoxicology and Teratology. 1995. V. 17. P. 393–401.
  10. Hossain A., Hajman K., Charitidi K., Erhardt S., Zimmermann U., Knipper M., and Canlon B. // Endocrin. 2008. V. 149. P. 6356–6365.
  11. Nagano M., Ozawa H., and Suzuki H. // Neurosc. Res. 2008. V. 60. P. 364–371.
  12. Aronsson M., Fuxe K., Dong Y., Agnati L.F., Okret S., and Gustafsson J.A. // Proc. Natl. Acad. Sci. USA. 1988. V. 85. P. 9331–9335.
  13. Ábrahám I., Juhász G., Kékesi K.A., and Kovács K.J. // Brain Res. 1996. V. 733. P. 56–63.
  14. Takeda A., Suzuki M., Tamano H., Takada S., Ide K., and Oku N. // Neuroch. Intl. 2012. V. 60. P. 394–399.
  15. Zinchuk V. and Grossenbacher‐Zinchuk O. // CP Cell Biol. 2014. V. 62.
  16. Zinchuk V. and Grossenbacher‐Zinchuk O. // CP Cell Biol. 2011. V. 52.
  17. Adler J. and Parmryd I. // PLoS ONE. 2014. V. 9. P. e111983.
  18. Adler J. and Parmryd I. // Cyt. Pt A. 2010. V. 77A. P. 733–742.
  19. Dunn K.W., Kamocka M.M., and McDonald J.H. // Am. J. of Phys.-Cell Phys. 2011. V. 300. P. C723–C742.
  20. Varga J., Ferenczi S., Kovács K.J., Garafova A., Jezova D., and Zelena D. // PLoS ONE. 2013. V. 8. P. e72313.
  21. Bohn M.C., Dean D., Hussain S., and Giuliano R. // Dev. Brain Res. 1994. V. 77. P. 157–162.
  22. Tsiarli M.A., Paula Monaghan A., and DeFranco D.B. // Brain Res. 2013. V. 1523. P. 10–27.
  23. Vernocchi S., Battello N., Schmitz S., Revets D., Billing A.M., Turner J.D., and Muller C.P. // Mol. & Cell. Prot. 2013. V. 12. P. 1764–1779.
  24. Gutièrrez-Mecinas M., Trollope A.F., Collins A., Morfett H., Hesketh S.A., Kersanté F., and Reul J.M.H.M. // Proc. Natl. Acad. Sci. USA. 2011. V. 108. P. 13806–13811.
  25. Papadopoulos A., Chandramohan Y., Collins A., Droste S.K., Nutt D.J., and Reul J.M.H.M. // Eur. Neuropsych. 2011. V. 21. P. 316–324.
  26. Trollope A.F., Gutièrrez-Mecinas M., Mifsud K.R., Collins A., Saunderson E.A., and Reul J.M.H.M. // Exp. Neurol. 2012. V. 233. P. 3–11.
  27. Ben-Ari Y. // Nat Rev Neurosci. 2002. V. 3. P. 728–739.
  28. Lanshakov D.A., Sukhareva E.V., Kalinina T.S., and Dygalo N.N. // Neur. of Dis. 2016. V. 91. P. 1–9.
  29. Britanova O., Akopov S., Lukyanov S., Gruss P., and Tarabykin V. // Eur J of Neurosc. 2005. V. 21. P. 658–668.
  30. Baranek C., Dittrich M., Parthasarathy S., Bonnon C.G., Britanova O., Lanshakov D., Boukhtouche F., Sommer J.E., Colmenares C., Tarabykin V., and Atanasoski S. // Proc. Natl. Acad. Sci. USA. 2012. V. 109. P. 3546–3551.
  31. Alcamo E.A., Chirivella L., Dautzenberg M., Dobreva G., Farinas I., Grosschedl R., and McConnell S.K. // Neur. 2008. V. 57. P. 364–377.
  32. Britanova O., De Juan Romero C., Cheung A., Kwan K.Y., Schwark M., Gyorgy A., Vogel T., Akopov S., Mitkovski M., Agoston D., Šestan N., Molnár Z., and Tarabykin V. // Neur. 2008. V. 57. P. 378–392.
  33. Bae E.-J., Lee H.-S., Park C.-H., and Lee S.-H. // FEBS Let. 2009. V. 583. P. 1505–1510.
  34. Perlmann T. and Wallén-Mackenzie Å. // Cell Tissue Res. 2004. V. 318. P. 45–52.
  35. Hoerder-Suabedissen A., Oeschger F.M., Krishnan M.L., Belgard T.G., Wang W.Z., Lee S., Webber C., Petretto E., Edwards A.D., and Molnár Z. // Proc. Natl. Acad. Sci. USA. 2013. V. 110. P. 3555–3560.
  36. Hoerder-Suabedissen A. and Molnár Z. // Cereb. Cort. 2013. V. 23. P. 1473–1483.
  37. Oeschger F.M., Wang W.-Z., Lee S., García-Moreno F., Goffinet A.M., Arbonés M.L., Rakic S., and Molnár Z. // Cereb. Cort. 2012. V. 22. P. 1343–1359.
  38. Tolner E.A., Sheikh A., Yukin A.Y., Kaila K., and Kanold P.O. // J. Neurosci. 2012. V. 32. P. 692–702.
  39. Viswanathan S., Bandyopadhyay S., Kao J.P.Y., and Kanold P.O. // J. Neurosci. 2012. V. 32. P. 1589–1601.
  40. Friauf E., McConnell S., and Shatz C. // J. Neurosci. 1990. V. 10. P. 2601–2613.
  41. McConnell S., Ghosh A., and Shatz C. // J. Neurosci. 1994. V. 14. P. 1892–1907.
  42. McConnell S.K., Ghosh A., and Shatz C J. // Sci. 1989. V. 245. P. 978–982.
  43. Wang Z., Benoit G., Liu J., Prasad S., Aarnisalo P., Liu X., Xu H., Walker N.P.C., and Perlmann T. // Nat. 2003. V. 423. P. 555–560.
  44. Yu S., Yang S., Holsboer F., Sousa N., and Almeida O.F.X. // PLoS ONE. 2011. V. 6. P. e22419.
  45. Wyrwoll C.S., Holmes M.C., and Seckl J.R. // Front in Neuroendo. 2011. V. 32. P. 265–286.
  46. Rosewicz S., McDonald A.R., Maddux B.A., Goldfine I.D., Miesfeld R.L., and Logsdon C.D. // J. of Biol. Chem. 1988. V. 263. P. 2581–2584.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Experimental scheme. The arrow indicates the material sampling.

Жүктеу (58KB)
3. Fig. 2. GR expression in the brain of neonatal rats on day 3 of life. GR – green, Alexa 488. In panoramic images of GR staining (1A), the CA1 region of the hippocampus and the entorhinal cortex are marked with white frames. Scale bar is 500 μm.

Жүктеу (544KB)
4. Fig. 3. High-NA objective images of double immunofluorescence staining of GR (green, Alexa 488) and cell type markers (red, Alexa 568) at 40x magnification in the CA1 region of the hippocampus (a) and the entorhinal cortex (b). Colocalization sites are marked with white triangles. Scale bar, 50 μm.

Жүктеу (656KB)
5. Fig. 4. Images of double immunofluorescence staining of GR (green, Alexa 488) and cell type markers (red, Alexa 568) taken with a high numerical aperture objective at 40x magnification in the entorhinal cortex before (a) and after (b) DEX administration. GR was translocated into the cell nucleus 6 h after DEX administration in the entorhinal cortex. Scale bar, 50 μm.

Жүктеу (779KB)

© Russian Academy of Sciences, 2024