ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ КИНЕТИЧЕСКИМ МОМЕНТОМ ТВЕРДОГО ТЕЛА (КОСМИЧЕСКОГО АППАРАТА) ПРИ ВЫПОЛНЕНИИ ПРОСТРАНСТВЕННОГО РАЗВОРОТА
- Авторы: Левский М.В.1
-
Учреждения:
- Научно-исследовательский институт космических систем им. А.А. Максимова – филиал Государственного космического научно-производственного центра им. М.В. Хруничева
- Выпуск: № 1 (2023)
- Страницы: 76-94
- Раздел: Статьи
- URL: https://archivog.com/1026-3519/article/view/672868
- DOI: https://doi.org/10.31857/S0572329922060137
- EDN: https://elibrary.ru/KGUTWN
- ID: 672868
Цитировать
Аннотация
Представлено кватернионное решение динамической задачи оптимального разворота твердого тела (например, космического аппарата) из известного начального в заданное конечное угловое положение. Оптимизация программы управления проводится с использованием комбинированного показателя, сочетающего квадратичный критерий качества и время разворота, минимизируемый функционал объединяет в заданной пропорции энергетические затраты и длительность маневра. На основе принципа максимума и кватернионных моделей и методов исследования управляемого движения твердого тела (космического аппарата) получено решение поставленной задачи. Построение оптимального вращения основано на дифференциальном уравнении, связывающем кинетический момент и кватернион ориентации твердого тела. В аналитической форме записаны условия оптимальности и изучены свойства оптимального движения. Представлены аналитические уравнения и расчетные формулы для нахождения оптимального управления. Закон управления сформулирован в виде явной зависимости управляющих переменных от фазовых координат. Даны ключевые соотношения, определяющие оптимальные значения параметров алгоритма управления кинетическим моментом. В случае динамически симметричного тела дается полное решение задачи разворота в замкнутой форме: получены аналитические зависимости как явные функции времени для управляющих переменных и соотношения для расчета параметров закона управления. Приводятся численный пример и результаты математического моделирования вращения космического аппарата как твердого тела при оптимальном управлении, демонстрирующие практическую реализуемость предложенного метода управления.
Об авторах
М. В. Левский
Научно-исследовательский институт космических систем им. А.А. Максимова –филиал Государственного космического научно-производственного центра им. М.В. Хруничева
Автор, ответственный за переписку.
Email: levskii1966@mail.ru
Россия, Королев
Список литературы
- Бранец В.Н., Шмыглевский И.П. Применение кватернионов в задачах ориентации твердого тела. М.: Наука, 1973. 320 с.
- Алексеев К.Б., Малявин А.А., Шадян А.В. Экстенсивное управление ориентацией космического аппарата на основе нечеткой логики // Полет. 2009. № 1. С. 47–53.
- Велищанский М.А., Крищенко А.П., Ткачев С.Б. Синтез алгоритмов переориентации космического аппарата на основе концепции обратной задачи динамики // Изв. РАН. ТиСУ. 2003. № 5. С. 156–163.
- Ваньков А.И. Адаптивное робастное управление угловым движением КА с использованием прогнозирующих моделей // Космич. исслед. 1994. Т. 32. Вып. 4–5. С. 13–21.
- Раушенбах Б.В., Токарь Е.Н. Управление ориентацией космических аппаратов. М.: Наука, 1974. 600 с.
- Levskii M.V. About method for solving the optimal control problems of spacecraft spatial orientation // Probl. Nonlin. Anal. Eng. Sys. 2015. V. 21. № 2. P. 61–75.
- Решмин С.А. Пороговая абсолютная величина релейного управления при наискорейшем приведении спутника в гравитационно-устойчивое положение // Доклады Академии наук. 2018. Том 480. № 6. С. 671–675. https://doi.org/10.1134/S1028335818060101
- Junkins J. L., Turner J. D. Optimal Spacecraft Rotational Maneuvers. Elsevier. USA, 1986. 515 p.
- Молоденков A.В., Сапунков Я.Г. Особые режимы управления в задаче оптимального разворота сферически-симметричного космического аппарата // Изв. РАН. ТиСУ. 2009. № 6. С. 47–54. https://doi.org/10.1134/S1064230709060057
- Молоденков А.В., Сапунков Я.Г. Решение задачи оптимального разворота осесимметричного космического аппарата с ограниченным и импульсным управлением при произвольных граничных условиях // Изв. РАН. ТиСУ. 2007. № 2. С. 152–165. https://doi.org/10.1134/S1064230707020189
- Бранец В.Н., Черток М.Б., Казначеев Ю.В. Оптимальный разворот твердого тела с одной осью симметрии // Космич. исслед. 1984. Т. 22. Вып. 3. С. 352–360.
- Shen H., Tsiotras P. Time-optimal Control of Axi-symmetric Rigid Spacecraft with two Controls // AIAA J. Guid. Contr. Dyn. 1999. V. 22. № 5. P. 682–694. https://doi.org/10.2514/2.4436
- Молоденков A.В., Сапунков Я.Г. Аналитическое решение задачи оптимального по быстродействию разворота осесимметричного космического аппарата в классе конических движений // Изв. РАН. ТиСУ. 2018. № 2. С. 131–147. https://doi.org/10.7868/S0002338818020117
- Scrivener S., Thompson R. Survey of Time-optimal Attitude Maneuvers // J. Guid. Contr. Dyn. 1994. V. 17. № 2. P. 225–233.
- Zhou H., Wang D., Wu B., EK Poh. Time-optimal reorientation for rigid satellite with reaction wheels // Int. J. Contr. 2012. V. 85. № 10. P. 1–12. https://doi.org/10.1080/00207179.2012.688873
- Левский М.В. Применение принципа максимума Л.С. Понтрягина к задачам оптимального управления ориентацией космического аппарата // Изв. РАН. ТиСУ. 2008. № 6. С. 144–157. https://doi.org/10.1134/S1064230708060117
- Решмин С.А. Пороговая абсолютная величина релейного управления при наискорейшем приведении спутника в желаемое угловое положение // Изв. РАН. ТиСУ. 2018. № 5. С. 30–41. https://doi.org/10.1134/S106423071805012X
- Левский М.В. Кинематически оптимальное управление переориентацией космического аппарата // Изв. РАН. ТиСУ. 2015. № 1. С. 119–136. https://doi.org/10.1134/S1064230714050116
- Левский М.В. Об одном случае оптимального управления пространственной ориентацией космического аппарата // Изв. РАН. ТиСУ. 2012. № 4. С. 115–130. https://doi.org/10.1134/S1064230712020086
- Бирюков В.Г., Челноков Ю.Н. Построение оптимальных законов изменения вектора кинетического момента твердого тела // Изв. РАН. МТТ. 2014. № 5. С. 3–21.
- Зелепукина О.В., Челноков Ю.Н. Построение оптимальных законов изменения вектора кинетического момента динамически симметричного твердого тела // Изв. РАН. МТТ. 2011. № 4. С. 31–49. https://doi.org/10.3103/S0025654411040030
- Левский М.В. Синтез оптимального управления терминальной ориентацией космического аппарата с использованием метода кватернионов // Изв. РАН. МТТ. 2009. № 2. С. 7–24. https://doi.org/10.3103/S0025654409020022
- Левский М.В. Особенности управления ориентацией космического аппарата, оборудованного инерционными исполнительными органами // Мехатроника, автоматизация, управление. 2015. Т. 16. № 3. С. 188–195. https://doi.org/10.17587/mau.16.188-195
- Levskii M.V. Special Aspects in Attitude Control of a Spacecraft, Equipped with Inertial Actuators // J. Comp. Sci. Appl. Informat. Technol. 2017. V. 2. № 4. P. 1–9. https://doi.org/10.15226/2474-9257/2/4/00121
- Quang M. Lam. Robust and adaptive reconfigurable control for satellite attitude control subject to under-actuated control condition of reaction wheel assembly // Math. Eng. Sci. Aerosp. 2018. V. 9. № 1. P. 47–63.
- Левский М.В. Использование универсальных переменных в задачах оптимального управления ориентацией космических аппаратов // Мехатроника, автоматизация, управление. 2014. № 1. С. 53–59.
- Стрелкова Н.А. Об оптимальной переориентации твердого тела // Проблемы механики управляемого движения. Нелинейные динамические системы. Пермь: ПГУ, 1990. С. 115–133.
- Зубов Н.Е., Ли М.В., Микрин Е.А., Рябченко В.Н. Терминальное построение орбитальной ориентации космического аппарата // Изв. РАН. ТиСУ. 2017. № 4. С. 154–173. https://doi.org/10.1134/S1064230717040190
- Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. M.: Наука, 1983. 392 с.
- Янг Л. Лекции по вариационному исчислению и теории оптимального управления. М.: Мир, 1974. 488 с.
- Банит Ю.Р., Беляев М.Ю., Добринская Т.А., Ефимов Н.И., Сазонов В.В., Стажков В.М. Определение тензора инерции международной космической станции по телеметрической информации. Препринт ИПМ им. М.В. Келдыша РАН. № 57. М.: ИПМ, 2002.
- Журавлев В.Ф., Климов Д.М. Прикладные методы в теории колебаний. М.: Наука, 1988. 328 с.
- Левский М.В. Устройство формирования параметров регулярной прецессии твердого тела. Патент на изобретение РФ № 2146638 // Бюллетень “Изобретения. Заявки и патенты”. 2000. № 8. С. 148.
Дополнительные файлы
