Investigation of resistance to plastic deformation and oxidation of single-crystals of CO-AL-W-Ta alloy directionally solidified with a flat front

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Single crystals of cobalt-base alloy Co8.4Al9.4W1.9T, at. % with axial macro-segregation of tungsten and aluminum (gradient castings) were directionally solidified with a flat solidification front. Mini-specimens of different chemical compositions were cut from the obtained single-crystals at different casting heights for compression and oxidation tests. The tests performed at 900 °C showed that tungsten increases the yield strength of the alloy, while aluminum improves its oxidation resistance. It is shown that the method of directional solidification with a flat front can be effectively applied to optimize the physical and mechanical characteristics of multicomponent alloys of metals.

Texto integral

Acesso é fechado

Sobre autores

A. Epishin

Merzhanov Institute of Structural Macrokinetics and Materials Science RAS

Autor responsável pela correspondência
Email: a.epishin2021@gmail.com
Rússia, Chernogolovka, Moscow Region, 142432

N. Petrushin

All-Russian Scientific Research Institute of Aviation Materials, National Research Center Kurchatov Institute

Email: a.epishin2021@gmail.com
Rússia, Moscow, 105005

I. Svetlov

All-Russian Scientific Research Institute of Aviation Materials, National Research Center Kurchatov Institute

Email: a.epishin2021@gmail.com
Rússia, Moscow, 105005

Е. Elyutin

All-Russian Scientific Research Institute of Aviation Materials, National Research Center Kurchatov Institute

Email: a.epishin2021@gmail.com
Rússia, Moscow, 105005

D. Lisovenko

Ishlinsky Institute for Problems in Mechanics RAS

Email: lisovenk@ipmnet.ru
Rússia, Moscow, 119526

Bibliografia

  1. Sato J., Omori T., Oikawa K. et al. Cobalt-base high-temperature alloys // Science. 2006. V. 312. № 5770. P. 90–91. https://doi.org/10.1126/science.1121738
  2. Pollock T.M., Dibbern J., Tsunekane M. et al. New Co-based γ-γ ′ high-temperature alloys // JOM. 2010. V. 62. № 1. P. 58–63. https://doi.org/10.1007/s11837-010-0013-y
  3. Bauer A., Neumeier S., Pyczak F. et al. Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants // Scripta Mater. 2010. V. 63. № 12. P. 1197–1200. https://doi.org/10.1016/j.scriptamat.2010.08.036
  4. Meher S., Yan H.-Y., Nag S. et al. Solute partitioning and site preference in γ/γ′ cobalt-base alloys // Scripta Mater. 2012. V. 67. № 10. P. 850–853. https://doi.org/10.1016/j.scriptamat.2012.08.006
  5. Koßmann J., Zenk C.H., Lopez-Galilea I. et al. Microsegregation and precipitates of an as-cast Co-based superalloy—microstructural characterization and phase stability modelling // J Mater Sci. 2015. V. 50. P. 6329–6338. https://doi.org/10.1007/s10853-015-9177-8
  6. Petrushin N., Hvatzkiy K., Gerasimov V. et al. A single-crystal Co-base superalloy strengthened by γ′ precipitates: structure and mechanical properties // Adv. Eng. Mater. 2015. V. 17. № 6. P. 755–760. https://doi.org/10.1002/adem.201500088
  7. Epishin A.I., Petrushin N.V., Link T. et.al. Investigation of the thermal stability of the structure of a cobalt heat-resistant alloy reinforced with intermetallic γ′-phase secretions // Deformation and Destruction of Materials. 2015. № 3. P. 17–22. (In Russian)
  8. Saal J.E., Wolverton C. Energetics of antiphase boundaries in γ′ Co3(Al,W)-based superalloys // Acta Mater. 2016. V. 103. P. 57–62. https://doi.org/10.1016/j.actamat.2015.10.007
  9. Midtlyng J., Epishin A.I., Petrushin N.V. et al. Creep behavior of a γ′-strengthened Co-base alloy with zero γ/γ′-lattice misfit at 800 °C, 196 MPa // J. Mater. Res. 2017. V. 32. № 24. P. 4466−4474. https://doi.org/10.1557/jmr.2017.424
  10. Epishin A., Petrushin N., Nolze G. et al. Investigation of the γ′-strengthened quaternary Co-based alloys Co–Al–W–Ta // Metall. Mater. Trans. A. 2018. V. 49. P. 4042–4057. https://doi.org/10.1007/s11661-018-4756-3
  11. Tomaszewska A., Oleksiak B. Microstructural characteristics of new type γ-γ ′ Co–9Al–9W cobalt-based superalloys in as-cast state // Metalurgija. 2018. V. 57. № 1–2. P. 91–94. https://hrcak.srce.hr/file/278975
  12. Epishin A., Chyrkin A., Nolze G. et. al. Interdiffusion in the face-centered cubic phase of the Co–Al–W–Ta system between 1090 and 1240 °C // JPED. 2018. V. 39. P. 176–185. https://doi.org/10.1007/s11669-018-0620-9
  13. Vigdorovich V.N., Volpyan A.E., Kurdyumov G.M. Directional crystallization and physico-chemical analysis. M.: Chemistry, 1976. 200 p. (In Russian)
  14. Sidorov V.V., Kablov D.E., Rigin V.E. Metallurgy of foundry heat-resistant alloys: technology and equipment. M.: VIAM, 2016. 368 p. (In Russian)
  15. Mishima Y., Ochiai S., Hamao N. et. al. Solid solution hardening of Nickel – role of transition metal and B-subgroup solutes // Trans. Jpn. Inst. Met. 1986. V. 27. № 9. 656–664. https://doi.org/10.2320/matertrans1960.27.656
  16. Aviation materials: Handbook in 13 volumes. Vol. 3. Foundry heat-resistant and intermetallic nickel-based alloys. 7th ed. M.: SIC “Kurchatov Institute”–VIAM, 2022. 192 p. (In Russian)
  17. Nikitin V.I. Corrosion and protection of gas turbine blades. M.: Mashinostroenie, 1987. 272 p. (In Russian)

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Gradient casting of cobalt alloy: (a) Distribution of alloying elements in zone II, MPSA; (b) Scheme of electroerosion cutting of cylindrical mini-samples of different chemical composition for compression testing.

Baixar (176KB)
3. Fig. 2. Microstructure of cobalt alloy casting, SEM. (a) After two-stage heat treatment of 1300 °C/ 24 h and 700 °C/48 h; (b, c) After exposure at 900 °C for 500 h in the central (b) and near-surface (c) regions.

Baixar (272KB)
4. Fig. 3. Compression and heat resistance test results for Cool-WTa alloy samples at 900 °C: (a) Effect of tungsten content on yield strength. The insert shows the heating and deformation of a mini alloy sample in a Gleeble 3800 vacuum testing machine. (b) The effect of aluminum content on heat resistance. Change in the specific gravity of the samples ∆m⁄S depending on the exposure time t.

Baixar (144KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025