Оценка масштабных параметров металлов по данным усталостных испытаний образцов с поверхностными дефектами

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Предложена методика идентификации масштабного параметра градиентной теории упругости на основе известных экспериментальных данных по влиянию размеров поверхностных коррозионных дефектов на параметры сопротивления усталости сталей и алюминиевых сплавов. Показана возможность естественного описания снижения коэффициента концентрации напряжений вблизи малоразмерных коррозионных дефектов, которые в данной работе моделируются в виде полуэллипсоидальных поверхностных полостей. Идентифицированные значения масштабных параметров лежат в диапазоне 20–230 мкм.

Полный текст

Доступ закрыт

Об авторах

Ю. О. Соляев

Институт прикладной механики РАН; Московский авиационный институт (НИУ)

Автор, ответственный за переписку.
Email: yos@iam.ras.ru
Россия, Москва; Москва

С. С. Щербаков

Белорусский государственный университет

Email: sherbakovss@mail.ru
Белоруссия, Минск

К. С. Голубкин

Московский авиационный институт (НИУ)

Email: golubkink@mail.ru
Россия, Москва

П. О. Поляков

Московский авиационный институт (НИУ)

Email: p.o.polyakov@yandex.ru
Россия, Москва

Список литературы

  1. Eubanks R.A. Stress concentration due to a hemispherical pit at a free surface // J. Appl. Mech. 1954. V. 21. № 1. P. 57–62. https://doi.org/10.1115/1.4010819
  2. Fujita T., Tsuchida E., Nakahara I. Stress concentration due to a hemi-prolate spheroidal pit at a free surface of a semi-infinite body under all-around tension // Bulletin of JSME. 1980. V. 23. № 181. P. 1048–1054. https://doi.org/10.1299/JSME1958.21.561
  3. Cerit M., Genel K., Eksi S. Numerical investigation on stress concentration of corrosion pit // Eng. Fail. Anal. 2009. V. 16. № 7. P. 2467–2472. https://doi.org/10.1016/j.engfailanal.2009.04.004
  4. An L.S., Park Y.C., Kim H.K. A numerical study of the tensile stress concentration in a hemi-ellipsoidal corrosion pit on a plate // Int. J. Steel Struct. 2019. V. 19. P. 530–542. https://doi.org/10.1007/s13296-018-0134-7
  5. Capula-Colindres S. et al. Mechanical behavior of X60 pipelines containing pitting corrosion defects based on finite element method // Forces in Mechanics. 2024. V. 16. P. 100278. https://doi.org/10.1016/j.finmec.2024.100278
  6. Zerbst U. et al. Defects as a root cause of fatigue failure of metallic components. III: Cavities, dents, corrosion pits, scratches // Eng. Fail. Anal. 2019. V. 97. P. 759–776. https://doi.org/10.1016/j.engfailanal.2019.01.034
  7. Katona R.M., Karasz E.K., Schaller R.F. A review of the governing factors in pit-to-crack transitions of metallic structures // Corrosion. 2023. V. 79. № 1. P. 72–96. https://doi.org/10.5006/4179
  8. Dolley, Lee, Wei. The effect of pitting corrosion on fatigue life // Fatigue Fract. Eng. Mater. Struct. 2000. V. 23. № 7. P. 555–560. https://doi.org/10.1046/j.1460-2695.2000.00323.x
  9. Wang Q.Y., Pidaparti R.M., Palakal M.J. Comparative study of corrosion-fatigue in aircraft materials // AIAA J. 2001. V. 39. № 2. P. 325–330. https://doi.org/10.2514/2.1308
  10. Larrosa N.O., Akid R., Ainsworth R.A. Corrosion-fatigue: a review of damage tolerance models // Int. Mater. Rev. 2018. V. 63. № 5. P. 283–308. http://dx.doi.org/10.1080/09506608.2017.1375644
  11. Becker K. et al. The effect of surface degradation on fatigue and fracture behaviour // Materials & Design. 1993. V. 14. № 3. P. 175–182.
  12. Beltran‐Zuñiga M.A. et al. Effect of microstructure and crystallographic texture on the toughness anisotropy of API 5L X46 steel // Fatigue Fract. Eng. Mater. Struct. 2018. V. 41. № 4. P. 749–761. https://doi.org/10.1111/ffe.12782
  13. Evans C., Leiva-Garcia R., Akid R. Strain evolution around corrosion pits under fatigue loading // Theor. Appl. Fract. Mech. 2018. V. 95. P. 253–260. https://doi.org/10.1016/j.tafmec.2018.02.015
  14. Rokhlin S.I. et al. Effect of pitting corrosion on fatigue crack initiation and fatigue life // Eng. Frac. Mech. 1999. V. 62. № 4–5. P. 425–444. https://doi.org/10.1016/S0013-7944(98)00101-5
  15. Sankaran K.K., Perez R., Jata K.V. Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6: modeling and experimental studies // Mater. Sci. Eng. A. 2001. V. 297. № 1–2. P. 223–229. https://doi.org/10.1016/S0921-5093(00)01216-8
  16. Mindlin R.D. Micro-structure in linear elasticity // Arch. Ration. Mech. Anal. 1964. V. 16. № 1. P. 51–78.
  17. Askes H., Aifantis E. C. Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results // Int. J. Solids Struct. 2011. V. 48. № 13. P. 1962–1990. https://doi.org/10.1016/j.ijsolstr.2011.03.006
  18. Askes H., Susmel L. Understanding cracked materials: is linear elastic fracture mechanics obsolete? // Fatigue Fract. Eng. Materials Structures. 2015. V. 38. № 2. P. 154–160. https://doi.org/10.1111/ffe.12183
  19. Razavi N. et al. Length scale parameters to estimate fatigue lifetime of 3D-printed titanium alloy Ti6Al4V containing notches in the as-manufactured condition // Int. J. Fatigue. 2023. V. 167. P. 107348. https://doi.org/10.1016/j.ijfatigue.2022.107348
  20. Jadallah O. et al. Microstructural length scale parameters to model the high-cycle fatigue behaviour of notched plain concrete // Int. J. Fatigue. 2016. V. 82. P. 708–720. https://doi.org/10.1016/j.ijfatigue.2015.09.029
  21. Vasiliev V., Lurie S., Solyaev Y. New approach to failure of pre-cracked brittle materials based on regularized solutions of strain gradient elasticity // Eng. Fract. Mech. 2021. V. 258. P. 108080. https://doi.org/10.1016/j.engfracmech.2021.108080
  22. Vasiliev V., Lurie S. On the failure analysis of cracked plates within the strain gradient elasticity in terms of the stress concentration // Procedia Structural Integrity. 2021. V. 32. P. 124–130. https://doi.org/10.1016/j.prostr.2021.09.018
  23. Васильев В.В., Лурье С.А., Салов В.А. Исследование прочности пластин с трещинами на основе критерия максимальных напряжений в масштабно-зависимой обобщенной теории упругости // Физическая мезомеханика. 2018. Т. 21. № 4. С. 5–12. http://doi.org/10.24411/1683-805X-2018-14001
  24. Васильев В.В., Лурье С.А. Новый метод исследования прочности хрупких тел с трещинами // Деформация и разрушение материалов. 2019. № 9. С. 12–19. https://doi.org/10.31044/1814-4632-2019-9-12-19
  25. Васильев В.В., Лурье С.А., Салов В.А. Определение нагрузки, вызывающей появление пластической деформации в растягиваемой пластине с трещиной // Изв. РАН. МТТ. 2020. № 4. С. 43–49. https://doi.org/10.31857/S0572329920040133
  26. Васильев В.В., Лурье С.А. Новое решение плоской задачи о равновесной трещине // Изв. РАН. МТТ. 2016. № 5. С. 61–67.
  27. Solyaev Y. Self-consistent homogenization approach for polycrystals within second gradient elasticity // Mech. Res. Commun. 2023. V. 132. P. 104162. https://doi.org/10.48550/arXiv.2304.11074
  28. Solyaev Y. Self-consistent assessments for the effective properties of two-phase composites within strain gradient elasticity // Mech. Mater. 2022. V. 169. P. 104321. https://doi.org/10.1016/j.mechmat.2022.104321
  29. Gao X.L., Park S.K. Variational formulation of a simplified strain gradient elasticity theory and its application to a pressurized thick-walled cylinder problem // Int. J. Solids Struct. 2007. V. 44. № 22–23. P. 7486–7499. https://doi.org/10.1016/j.ijsolstr.2007.04.022
  30. Froiio F., Zervos A. Second-grade elasticity revisited // Math. Mech. Solids. 2019. V. 24. № 3. P. 748–777.
  31. Solyaev Y., Lurie S., Altenbach H., dell’Isola F. On the elastic wedge problem within simplified and incomplete strain gradient elasticity theories // Int. J. Solids Struct. 2022. V. 239–240. P. 111433. https://doi.org/10.1016/j.ijsolstr.2022.111433
  32. Lurie S., Solyaev Y. Variant of strain gradient elasticity with simplified formulation of traction boundary value problems // ZAMM Zeitschrift für Angewandte Mathematik und Mechanik. 2023. V. 103. № 12. P. e202300329. http://doi.org/10.1002/zamm.202300329
  33. Khakalo S., Niiranen J. Gradient-elastic stress analysis near cylindrical holes in a plane under bi-axial tension fields // Int. J. Solids Struct. 2017. V. 110–111. P. 351–366. https://doi.org/10.1016/j.ijsolstr.2016.10.025
  34. Georgiadis H.G., Gourgiotis P.A., Anagnostou D.S. The Boussinesq problem in dipolar gradient elasticity // Arch. Appl. Mech. 2014. V. 84. P. 1373–1391. https://doi.org/10.1007/s00419-014-0854-x
  35. Gourgiotis P.A., Sifnaiou M.D., Georgiadis H.G. The problem of sharp notch in microstructured solids governed by dipolar gradient elasticity // Int. J. Fract. 2010. V. 166. P. 179–201. https://doi.org/10.1007/s10704-010-9523-4
  36. Dell’Isola F. et al. Deformation of an elastic second gradient spherical body under equatorial line density of dead forces // Eur. J. Mech. A/Solids. 2024. V. 103. P. 105153. https://doi.org/10.1016/j.euromechsol.2023.105153
  37. Solyaev Y., Lurie S., Korolenko V. Three-phase model of particulate composites in second gradient elasticity // Eur. J. Mech. A/Solids. 2019. V. 78. P. 103853. https://doi.org/10.1016/j.euromechsol.2019.103853
  38. Andreaus U. et al. Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity // Int. J. Eng. Sci. 2016. V. 108. P. 34–50. https://doi.org/10.1016/j.ijengsci.2016.08.003
  39. Reiher J.C., Giorgio I., Bertram A. Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity // J. Eng. Mech. 2017. V. 143. № 2. P. 04016112. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001184
  40. Solyaev Y. Complete general solutions for equilibrium equations of isotropic strain gradient elasticity // J. Elast. 2024. V. 156. P. 107–124. https://doi.org/10.1007/s10659-023-10039-4
  41. Lurie S.A., Volkov-Bogorodskiy D.B., Belov P.A. On General Representations of Papkovich–Papkovich Solutions in Gradient Elasticity // Lobachevskii J. Math. 2023. V. 44. № 6. P. 2336–2351. https://doi.org/10.1134/S199508022306032X
  42. Fatoba O., Akid R. Uniaxial cyclic elasto-plastic deformation and fatigue failure of API-5L X65 steel under various loading conditions // Theor. Appl. Fract. Mech. 2018. V. 94. P. 147–159. https://doi.org/10.1016/j.tafmec.2018.01.015
  43. Васильев В.В., Лурье С.А., Салов В.А. Определение нагрузки, вызывающей появление пластической деформации в растягиваемой пластине с трещиной // Изв. РАН. МТТ. 2020. № 4. С. 43–49. https://doi.org/10.31857/S0572329920040133
  44. Capula-Colindres S. et al. Determination of fracture toughness and KIC-CVN correlations for BM, HAZ, and WB in API 5L X60 pipeline // Arab. J. Sci. Eng. 2021. V. 46. № 8. P. 7461–7469. https://doi.org/10.1007/s13369-021-05451-8
  45. Sivaranjani T. et al. Fatigue life estimation of aircraft structural component using FE approach and validation through analytical and experimental methods // Materials Today: Proceedings. 2023. https://doi.org/10.1016/j.matpr.2023.07.333
  46. Sayah Badkhor M. et al. Behavior Analysis of Cold Expanded-Bolt Clamped AL2024-T3 Plate // Int. J. ADV Manuf. Tech. 2017. V. 10. № 2. P. 1–13.
  47. Короленко В., Соляев Ю. О. Оценка уровня концентрации напряжений вблизи микро-размерных отверстий на основе упрощенных моделей градиентной теории упругости // Труды МАИ. 2021. № 121. С. 4. https://doi.org/10.34759/trd-2021-121-04
  48. Military Handbook, Metallic Materials and Elements for Aerospace Vehicle Structures, Mil-HDBK-5G, United States Department of Defense, 1994.
  49. Gusev A.A., Lurie S. A. Symmetry conditions in strain gradient elasticity // Math. Mech. Solids. 2017. V. 22. № 4. P. 683–691. https://doi.org/10.1177/1081286515606960
  50. Lurie S.A. et al. Dilatation gradient elasticity theory // Eur. J. Mech. A/Solids. 2021. V. 88. P. 104258. https://doi.org/10.1016/j.euromechsol.2021.104258
  51. Lurie S.A., Belov P.A., Solyaev Y.O. On possible reduction of gradient theories of elasticity // Sixty Shades of Generalized Continua. Advancer Structured Materials. 2023. V. 170. P. 479–498. https://doi.org/10.1007/978-3-031-26186-2_30
  52. Lurie S., Belov P., Solyaev Y. On an extended family of quasi-equivalent models of the gradient elasticity theory // Theoretical Analyses, Computations, and Experiments of Multiscale Materials. Advancer Structured Materials. 2022. V. 175. P. 155–182. https://doi.org/10.1007/978-3-031-04548-6_9

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Модель полуэллипсоидального поверхностного дефекта, а – геометрия модели и пример конечно-элементной сетки. Фиолетовым цветом показана поверхность полости, б – пример результатов расчетов для концентрации максимальных главных напряжений tI /t в условиях одноосного растяжения.

Скачать (167KB)
3. Рис. 2. Примеры расчетов, (а) – изменение концентрации напряжений вдоль контура полусфероидальной полости (a = b = 2h) для различных соотношений h/l, (б) – зависимость коэффициента концентрации напряжений от отношения h/l для различной геометрии полости (b/h = 2).

Скачать (156KB)
4. Рис. 3. Оценка точности выполнения граничных условий по отсутствию реберных усилий (si) на острой кромке (ребре) поверхностной полости.

Скачать (107KB)
5. Рис. 4. Распределение концентрации максимальных главных напряжений (а) и эквивалентных напряжений по Мизесу (б) вдоль контура полостей разной глубины в стали X65 в классическом решении (маркеры без заливки) и в решении ГТУ при значении масштабного параметра l = 0.24 мм (маркеры с заливкой). Горизонтальным пунктиром показан уровень концентрации, соответствующий пределу текучести.

Скачать (194KB)
6. Рис. 5. Зависимость коэффициента концентрации напряжений от глубины дефекта h [мкм] в образцах стали X20Cr13. Точки – номинальные значения Kt, соответствующее экспериментальным данным. Линии – решение ГТУ (l = 20 мкм – сплошные, l = 5 мкм – штриховые, l = 50 мкм – пунктирные). Синий цвет – h/a = 0.62, желтый цвет – h/a = 1.24.

Скачать (91KB)
7. Рис. 6. Оценка размеров зоны пластических деформаций в классическом упругом решении (а, эквивалентные напряжения, МПа) и в упругопластическом решении (б, пластические деформации, %) для образцов сплава Al 2024-T3 с поверхностной полостью с размерами a = b = 250 мкм, h = 375 мкм при растягивающей нагрузке 206 МПа.

Скачать (88KB)
8. Рис. 7. Зависимость концентрации напряжений от глубины поверхностной полости в образце сплава Al 2024-T3 для разных соотношений диаметра к глубине (a/h). Точки – экспериментальные данные, линии – решение ГТУ с масштабным параметром l = 100 мкм, h [мкм].

Скачать (84KB)
9. Рис. 8. Обработка экспериментальных данных для образцов сплава 7075-T6, содержащих дефекты различного размера (в соответствии с табл. 4). (а) Зависимость концентрации напряжений в решении ГТУ от масштабного параметра. (б) Кривые усталости. Точки – экспериментальные данные (в часах) [15], линии – аппроксимация на основе вычисленных значений концентрации напряжений в решении ГТУ, l [мкм], N – число циклов до разрушения.

Скачать (147KB)

© Российская академия наук, 2025