Пространственная дисперсия акустических волн в функционально-градиентных стержнях

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Гармонические акустические волны в полубесконечном функционально-градиентном (ФГ) одномерном стержне с продольной произвольной неоднородностью анализируются комбинированным методом, основанным на модифицированном формализме Коши и методе экспоненциальных матриц. Построены замкнутые дисперсионные уравнения для гармонических волн, из решения которых получены неявные дисперсионные соотношения для акустических волн в ФГ стержнях. Для продольной неоднородности полиномиального типа соответствующие дисперсионные соотношения строятся в явном виде.

Полный текст

Доступ закрыт

Об авторах

А. И. Каракозова

Национальный исследовательский Московский Государственный Строительный Университет

Автор, ответственный за переписку.
Email: karioca@mail.ru
Россия, Москва

Список литературы

  1. Baron C. & Naili S. Propagation of elastic waves in a fluid-loaded anisotropic functionally graded waveguide: application to ultrasound characterization // J. Acoust. Soc. Am. 2010. V. 127(3). P. 1307–1317. https://doi.org/10.1121/1.3292949
  2. Bendenia N. et al. Deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates resting on Pasternak elastic foundation // Comp. Concrete. 2020. V. 26. № 3. P. 213–226. https://doi.org/10.12989/cac.2020.26.3.213
  3. Gupta A. & Talha M. Recent development in modeling and analysis of functionally graded materials and structures // Prog. Aerosp. Sci. 2015. V. 79. P. 1–14. https://doi.org/10.1016/j.paerosci.2015.07.001
  4. Han X. et al. A quadratic layer element for analyzing stress waves in FGMs and its application in material characterization // JSV. 2000. V. 236(2). P. 307–321. https://doi.org/10.1006/jsvi.2000.2966
  5. Ilyashenko A.V. et al. SH waves in anisotropic (monoclinic) media // Z. Angew. Math. Phys. 2018. 69(17). P. 17. https://doi.org/10.1007/s00033-018-0916-y
  6. Kuznetsov S.V. Cauchy formalism for Lamb waves in functionally graded plates // J. Vibr. Control. 2019. V. 25. № 6. P. 1227–1232. https://doi.org/10.1177/1077546318815376
  7. Kuznetsov S.V. Lamb waves in stratified and functionally graded plates: discrepancy, similarity, and convergence // Waves Rand. Complex Media. 19. V. 31(6). P. 1–10. https://doi.org/10.1080/17455030.2019.1683257
  8. Li Z., Yu J., Zhang X. & Elmaimouni L. Guided wave propagation in functionally graded fractional viscoelastic plates: A quadrature-free Legendre polynomial method // Mech. Adv. Mater. Struct. 2020. V. 29(16). P. 1–21. https://doi.org/10.1080/15376494.2020.1860273
  9. Menasria A. et al. A four-unknown refined plate theory for dynamic analysis of FG-sandwich plates under various boundary conditions // Steel Comp. Struct. 2020. V. 36(3). P. 355–367. https://doi.org/10.12989/scs.2020.36.3.355
  10. Vlasie V. & Rousseau M. Guide modes in a plane elastic layer with gradually continuous acoustic properties // NDT&E Int. 2004. V. 37(8). P. 633–644. https://doi.org/10.1016/j.ndteint.2004.04.003
  11. Amor M.B. & Ghozlen M.H.B. Lamb waves propagation in functionally graded piezoelectric materials by Peano-series method // Ultrasonics. 2015. V. 55. P. 10–14. https://doi.org/10.1016/j.ultras.2014.08.020
  12. Chikr S.C. et al. A novel four-unknown integral model for buckling response of FG sandwich plates resting on elastic foundations under various boundary conditions using Galerkin’s approach // Geomech. Eng. 2020. V. 21. № 5. P. 471–487. https://doi.org/10.12989/gae.2020.21.5.471
  13. Lefebvre J.E. et al. Acoustic wave propagation in continuous functionally graded plates: an extension of the Legendre polynomial approach // IEEE T Ultrason. Ferr. 2001. V. 48(5). P. 1332–1340. https://doi.org/10.1109/58.949742
  14. Othmani C. et al. Numerical simulation of lamb waves propagation in a functionally graded piezoelectric plate composed of GaAs-AlAs materials using Legendre polynomial approach // Optik. 2017. V. 142. P. 401–411.
  15. Yu J.G. et al. Propagating and non-propagating waves in infinite plates and rectangular cross section plates: orthogonal polynomial approach // Acta Mech. 2017. V. 228(11). P. 3755–3769. https://doi.org/10.1007/s00707-017-1917-1
  16. Gopalakrishnan S., Ruzzene M. & Hanagud S. Spectral Finite Element Method. In: Computational Techniques for Structural Health Monitoring. In: Springer Series in Reliability Engineering. London: Springer, 2011. 440 p. https://doi.org/10.1007/978-0-85729-284-1
  17. Nanda N. & Kapuria S. Spectral finite element for wave propagation analysis of laminated composite curved beams using classical and first order shear deformation theories // Composite Struct. 2015. V. 132. № 3. P. 310–320. https://doi.org/10.1016/j.compstruct.2015.04.061
  18. Baron C. Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum // Ultrasonics. 2011. V. 51. № 2. P. 123–130. https://doi.org/10.1016/j.ultras.2010.07.001
  19. Honarvar F., Enjilela E., Sinclair A. &Mirnezami S. Wave propagation in transversely isotropic cylinders // Int. J. Solids and Struct. 2007. V. 44. № 16. P. 5236–5246. https://doi.org/10.1016/j.ijsolstr.2006.12.029
  20. Ilyashenko A.V. et al. Pochhammer–Chree waves: polarization of the axially symmetric modes // Arch. Appl. Mech. 2018. V. 88. P. 1385–1394. https://doi.org/10.1007/s00419-018-1377-7
  21. Rigby S.E., Barr A.D. & Clayton M. A review of Pochhammer–Chree dispersion in the Hopkinson bar // Proc. Inst. Civil Eng. – Eng. Comp. Mech. 2018. V. 171. № 1. P. 3–13. https://doi.org/10.1680/jencm.16.00027
  22. Wu B., Su Y.P., Liu D.Y., Chen W.Q. & Zhang C.Z. On propagation of axisymmetric waves in pressurized functionally graded elastomeric hollow cylinders // J. Sound Vibr. 2018. V. 412. № 12. P. 17–47. https://doi.org/10.1016/j.jsv.2018.01.055
  23. Xu Ch. & Yu Z. Numerical simulation of elastic wave propagation in functionally graded cylinders using time-domain spectral finite element method // Adv. Mech. Eng. 2017. 9 (11). P. 1–17. https://doi.org/10.1177/1687814017734457
  24. Zhang B. et al. Axial guided wave characteristics in functionally graded one-dimensional hexagonal piezoelectric quasi-crystal cylinders // Math. Mech. Solids. 2022. V. 27. № 1. P. 125–143. https://doi.org/10.1177/10812865211013458
  25. Kuznetsov S.V. Abnormal dispersion of flexural Lamb waves in functionally graded plates // Z. Angew. Math. Phys. 2019. V. 70 (89). P. 1–8. https://doi.org/10.1007/s00033-019-1132-0
  26. Guha S. & Singh A.K. Influence of varying fiber volume fractions on plane waves reflecting from the stress-free/rigid surface of a piezoelectric fiber-reinforced composite half-space // Mech. Adv. Mater. Struct. 2022. V. 29. № 27. P. 5758–5772. https://doi.org/10.1080/15376494.2021.1964046
  27. Singh A.K., Rajput P., Guha S. & Singh S. Propagation characteristics of love-type wave at the electro-mechanical imperfect interface of a piezoelectric fiber-reinforced composite layer overlying a piezoelectric half-space // Europ. J. Mech. – A/Solids. 2022. V. 93. P. 104527. https://doi.org/10.1016/j.euromechsol.2022.104527
  28. Singh S., Singh A.K. & Guha S. Shear waves in a piezo-fiber-reinforced-poroelastic composite structure with sandwiched functionally graded buffer layer: Power series approach // Europ. J. Mech. – A/Solids. 2022. V. 92. P. 104470. https://doi.org/10.1016/j.euromechsol.2021.104470
  29. Singh S., Singh A.K., & Guha S. Impact of interfacial imperfections on the reflection and transmission phenomenon of plane waves in a porous-piezoelectric model // Appl. Math. Model. 2021. V. 100. P. 656–675. https://doi.org/10.1016/j.apm.2021.08.022
  30. Singh A.K., Mahto S.& Guha S. Analysis of plane wave reflection and transmission phenomenon at the interface of two distinct micro-mechanically modeled rotating initially stressed piezomagnetic fiber-reinforced half-spaces // Mech. Adv. Mater.Struct. 2022. V. 29. № 28. https://doi.org/10.1080/15376494.2021.2003490
  31. Gurtin M.E. The Linear Theory of Elasticity. Verlag, Berlin: Springer, 1976.
  32. Rauch J. & Reed M. Nonlinear microlocal analysis of semilinear hyperbolic systems in one space dimension // Duke Math. J. 1982. V. 49. P. 397–475.
  33. Hartman Ph. Ordinary Differential Equations (Classics in Applied Mathematics) 2nd Ed. Philadelphia: SIAM, 1987.
  34. Higham N.J. Functions of Matrices: Theory and Computation. N.Y.: SIAM, 2008.
  35. Kuznetsov S.V. Love waves in layered anisotropic media // J. Appl. Math. Mech. 2006. V. 70(1). P. 116–127. https://doi.org/10.1016/j.jappmathmech.2006.03.004
  36. Gómez, A. & Meiss J.D. Volume-preserving maps with an invariant // Chaos: Int. J. Nonlinear Sci. 2002. V. 12(2). P. 289–299. https://doi.org/10.1063/1.1469622
  37. Benoist O. Writing positive polynomials as sums of (few) squares // EMS Newsletter. 2017. V. 9(105). P. 8–13. https://doi.org/10.4171/NEWS/105/4
  38. Handelman D. Representing polynomials by positive linear functions on compact convex polyhedral // Pacific J. Math. 1988. V. 132(1). P. 35–62. https://doi.org/10.2140/pjm.1988.132.35
  39. Ivic A. The Riemann Zeta-Function, Wiley: New York, 1985.
  40. Kuznetsov S.V. Fundamental and singular solutions of Lamé equations for media with arbitrary elastic anisotropy // Quart. Appl. Math. 2005, V. 63. P. 455–467. https://doi.org/10.1090/S0033-569X-05-00969-X
  41. Hörmander L. The Analysis of Linear Partial Differential Operators III: Pseudo-Differential Operators. N.Y.: Springer: 2007.
  42. Boreman G.D. Modulation Transfer Function in Optical and Electro-Optical Systems. Bellingham, WA.: SPIE Press, 2001.
  43. Ziegler P.A., Schumacher M.E., Dezes P., van Wees J.-D. & Cloetingh S. Post-Variscan evolution of the lithosphere in the area of the European Cenozoic Rift System. London: Mem. Geol. Soc., 2006. P. 97–112. https://doi.org/10.1144/GSL.MEM.2006.032.01.06
  44. Loup B. &Wildi W. Subsidence analysis in the Paris Basin: a key to Northwest European intracontinental basins? // Basin Res. 1994. V. 6. № 2–3. P. 159–177. https://doi.org/10.1111/j.1365-2117.1994.tb00082.x
  45. Goldstein R.V. et al. Long-wave asymptotics of Lamb waves // Mech. Solids. 2017. V. 52. P. 700–707. https://doi.org/10.3103/S0025654417060097
  46. Abers G.A. Seismic low-velocity layer at the top of subducting slabs: Observations, predictions, and systematic // Phys. Earth Planet. Inter. 2005. V. 149. № 1–2. P. 7–29. https://doi.org/10.1016/j.pepi.2004.10.002
  47. Nakanishi A. et al. Crustal evolution of the southwestern Kuril Arc, Hokkaido Japan, deduced from seismic velocity and geochemical structure // Tectonophysics. 2009. V. 472. № 1–4. P. 105–123. https://doi.org/10.1016/j.tecto.2008.03.003
  48. Kuznetsov S.V. Acoustic waves in functionally graded rods with periodic longitudinal inhomogeneity // Mech. Adv. Mater. Struct. 2022. https://doi.org/10.1080/15376494.2022.2032888

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. 1D ФГ-стержень; n показывает направление нормали волны и x показывает направление координатной оси вдоль направления распространения волны.

Скачать (18KB)
3. Рис. 2. Вариации величин и удельных энергий с расстоянием для линейного бинома при гармоническом по времени возбуждении 2 Гц и возрастающей фазовой скорости; (а) величины; (b) удельные энергии.

Скачать (280KB)
4. Рис. 3. Изменения модулей и удельных энергий с расстоянием для линейного бинома при гармоническом по времени возбуждении 2 Гц и убывающей фазовой скорости; (а) величины; (b) удельные энергии.

Скачать (245KB)

© Российская академия наук, 2024