Heat production due to creep strains and wall viscoplastic flow in the plug material in a round pipe under the action of variable pressure difference

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A solution to the coupled boundary-value problem of non-isothermal deformation of a material forming a finite-length plug in an undeformable circular tube is presented. Under the conditions of rigid adhesion to the tube surface, the material undergoes deformation due to a varying pressure differential applied at the end faces of the plug. Irreversible deformation is associated with both creep and visco-plastic flow of the material, leading to its heating. Additionally, dependencies of the yield strength, viscosity coefficient, and creep parameters on temperature are considered. Using a large-deformation model, the study investigates creep and visco-plastic flow under increasing and constant pressure differentials, flow deceleration and unloading of the medium under decreasing pressure, and the cooling of the material after complete removal of the mechanical load.

Толық мәтін

Рұқсат жабық

Авторлар туралы

L. Kovtanyuk

Institute of Automation and Control Processes FEB RAS; Institute of Machinery and Metallurgy FEB RAS

Хат алмасуға жауапты Автор.
Email: lk@iacp.dvo.ru
Ресей, Vladivostok; Komsomolsk-on-Amur

G. Panchenko

Institute of Automation and Control Processes FEB RAS; Institute of Machinery and Metallurgy FEB RAS

Email: panchenko@iacp.dvo.ru
Ресей, Vladivostok; Komsomolsk-on-Amur

E. Popova

Institute of Automation and Control Processes FEB RAS

Email: polenao@bk.ru
Ресей, Vladivostok

Әдебиет тізімі

  1. Lee E.H. Elastic-plastic deformation at finite strains // ASME. J. Appl. Mech. 1969. V. 36. I. 1. P. 1–6. https://doi.org/10.1115/1.3564580
  2. Levitas V.I. Large elastoplastic deformations of materials at high pressure. Kyiv: Nauk. Dumka, 1987. 232 p. [in Russian]
  3. Xia Z., Ellyin F. A finite elastoplastic constitutive formulation with new co-rotational stress-rate and strain-hardening rule // ASME. J. Appl. Mech. 1995. V. 62. I. 3. P. 733–739. https://doi.org/10.1115/1.2897008
  4. Myasnikov V.P. Equations of motion of elastoplastic materials under large deformations // Bulletin of the Far Eastern Branch of the Russian Academy of Sciences. 1996. No. 4. P. 8–13. [in Russian]
  5. Shutov A.V., Ihlemann J. Analysis of some basic approaches to finite strain elasto-plasticity in view of reference change // Int. J. Plast. 2014. V. 63. P. 183–197. https://doi.org/10.1016/j.ijplas.2014.07.004
  6. Bykovtsev G.I., Shitikov A.V. Finite deformations in an elastoplastic medium, Sov. Phys. Dokl. 35 (3), 297–299. (1990).
  7. Burenin A.A., Bykovtsev G.I., Kovtanyuk L.V. A simple model of finite strain in an elastoplastic medium, Dokl. Phys. 41 (3), 127–129 (1996).
  8. Burenin A.A., Kovtanyuk L.V. Large Irreversible Deformations and Elastic Aftereffect (Dal’nauka, Vladivostok, 2013) [in Russian]
  9. Kovtanyuk L.V. Modeling of large elastoplastic deformations in an nonisothermal case, Dal’nevost. Mat. Zh. 5 (1), 110–120 (2004) [in Russian]
  10. Kovtanyuk L.V., Shitikov A.V. On the theory of large elastoplastic deformations taking into account temperature and rheological effects // Bulletin of the Far Eastern Branch of the Russian Academy of Sciences. 2006. No. 4. P. 87–93. [in Russian]
  11. Begun A.S., Burenin A.A., Kovtanyuk L.V. Large irreversible deformations under conditions of changing mechanisms of their formation and the problem of definition of plastic potentials // Doklady Physics. 2016. V. 61. I. 9. P. 463–466. https://doi.org/10.1134/S102833581609007X
  12. Begun A.S., Kovtanyuk L.V., Lemza A.O. Change of accumulation mechanisms of irreversible deformations of materials in an example of viscometric deformation // Mechanics of Solids. 2018. V. 53. I. 1. P. 85–92. https://doi.org/10.3103/S0025654418010107
  13. Burenin A.A., Galimzyanova K.N., Kovtanyuk L.V., Panchenko G.L. Matching growth mechanisms of irreversible deformation of a hollow sphere under uniform compression // Doklady Physics. 2018. V. 63. I. 10. P. 407–410. https://doi.org/10.1134/S1028335818100026
  14. Kovtanyuk L.V., Panchenko G.L. Comprehensive hydrostatic compression of cylindrical layer in conditions of creep and plastic flow // Vestnik Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost. 2019. № 3 (41). P. 76–84. [in Russian] https://doi.org/10.26293/chgpu.2019.41.3.005
  15. Begun A.S., Burenin A.A., Kovtanyuk L.V., Lemza A.O. On the mechanisms of production of large irreversible strains in materials with elastic, viscous and plastic properties // Arch. Appl. Mech. 2020. V 90. P. 829–845. https://doi.org/10.1007/s00419-019-01641-x
  16. Burenin A.A., Kovtanyuk L.V., Panchenko G.L. “Nonisothermal motion of an elastoviscoplastic medium through a pipe under a changing pressure drop,” Dokl. Phys. 60 (9), 419–422 (2015). https://doi.org/10.1134/S1028335815090098
  17. Burenin A.A., Kovtanyuk L.V., Panchenko G.L. “Development and deceleration of viscoplastic flow in a layer heated by friction on a rough plane,” J. Appl. Mech. Tech. Phy. 56, 626–635 (2015). https://doi.org/10.1134/S0021894415040100
  18. Burenin A.A., Kovtanyuk L.V., Panchenko G.L. “The motion of an elastoplastic medium in a circular tube heated due to boundary friction,” J. Appl. Math. Mech. 80 (2), 190–197 (2016). doi: 10.1016/j.jappmathmech.2016.06.01
  19. Burenin A.A., Kovtanyuk L.V., Panchenko G.L. “Deformation and Heating of an Elastoviscoplastic Cylindrical Layer Moving Owing to a Varying Pressure Drop,” Mech. Solids 53, 1–11 (2018). https://doi.org/10.3103/S0025654418010016
  20. Lurie A.I. Nonlinear theory of elasticity. M.: Nauka, 1980. 512 p. [in Russian]
  21. Norton F.H. The creep steel of high temperature. Y.: Mc Gpaw Hill, 1929. 110 p.
  22. Ishlinsky A.Yu., Ivlev D.D., Mathematical theory of plasticity. M.: Fizmatlit, 2001. 704 p. [in Russian]
  23. Bykovtsev G.I., Ivlev D.D. Plasticity theory. Vladivostok: Dalnauka, 1998. 528 p. [in Russian]
  24. Iost A. The correlation between the power-law coefficients in creep: the temperature dependence // J. Mater. Sci. 1998. V. 33. P. 3201–3206. https://doi.org/10.1023/A:1004368511595
  25. Pla F. Bifurcation phenomena in a convection problem with temperature dependent viscosity at low aspect ratio // Phys. D. 2009. V. 238. I. 5. P. 572–580. https://doi.org/10.1016/j.physd.2008.12.015

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Graph of the viscoplastic flow region boundary as a function of time.

Жүктеу (37KB)
3. Fig. 2. Temperature distribution in the plug material at the moments of time 2 and 4.

Жүктеу (60KB)
4. Fig. 3. Distribution of displacements at different moments of time.

Жүктеу (50KB)
5. Fig. 4. Distribution of irreversible strain component prz at different moments of time.

Жүктеу (31KB)
6. Fig. 5. Residual stresses in the material.

Жүктеу (34KB)

© Russian Academy of Sciences, 2024