Дипептид L-карнозин (β-аланил-L-гистидин) – криопротектор нервной ткани негибернирующих животных

Обложка

Цитировать

Полный текст

Аннотация

В работе исследовали криопротективные свойства дипептида L-карнозина (β-аланил-L-гистидин) на срезах обонятельной коры мозга крыс. Анализировали изменения активности N-метил-D-аспартатных рецепторов как наиболее уязвимых к действию криосохранения (КС), для этого экстраклеточно регистрировали НМДА-синаптический компонент возбуждающего постсинаптического потенциала (сокращенно — НМДА потенциалы). Срезы инкубировали с L-карнозином (20 мМ) в среде и замораживали с медленной скоростью (0.1°C/мин) до −10°C и после КС (30 сут) отогревали с такой же скоростью (0.1оC/мин) до +37°C. Определяли эффективность криопротекции L-карнозина по изменениям амплитуд НМДА потенциалов после КС по сравнению до КС. Дипептид восстанавливал рН замораживающей среды (6.9, без L-карнозина) до оптимальных значений (7.3—7.4), способствовал дегидратации свободной воды из срезов после КС, ингибировал развитие глутаматной эксайтотоксичности в срезах. Полученные данные доказывают, что L-карнозин проявляет свойства нетоксичного эффективного криопротектора в нервной ткани теплокровных негибернирующих животных.

Полный текст

Доступ закрыт

Об авторах

A. A. Мокрушин

Институт физиологии им. И.П. Павлова РАН

Автор, ответственный за переписку.
Email: mok@inbox.ru
Россия, Санкт-Петербург

Список литературы

  1. Ашмарин И.П., Каразеева Е.П., Лелекова Т.В. Проблемы эффективности ультрамалых доз и концентраций эндогенных и экзогенных веществ // Нейроиммунология, эпидемиология и интерферонология рассеянного склероза. СПб. 1996. С. 29—34.
  2. Бурлакова Е.Б., Конрадов А.А., Худяков И.В. Воздействие химических агентов в сверхмалых дозах на биологические объекты // Изв. АН СССР. Сер. биол. 1990. № 2. С. 184—193.
  3. Долгов Г.В., Куликов С.В., Легеза В.И., Малинин В.В., Морозов В.Г., Смирнов В.С., Сосюкин А.Е. Клиническая фармакология Тимогена. СПб.: Наука. 2003. 106 с.
  4. Митюшов М.И., Емельянов Н.А., Мокрушин А.А. Переживающий срез мозга как объект нейрофизиологического и нейрохимического исследования. Л.: Наука. 1986. 127 с.
  5. Мокрушин А.А. Пептид-зависимые механизмы нейрональной пластичности в обонятельной коре: Дис. д-ра биол. наук. Институт физиологии им. И. П. Павлова РАН. СПб. 1997. 397 с.
  6. Мокрушин А.А. Эффекты глубокого замораживания и отогревания на ионотропные глутаматергические рецепторные механизмы in vitro // Бюлл. экспер. биол. мед. 2016. Т. 161. С. 36—42.
  7. Мокрушин А.А., Боровиков С.Е. Установка для изучения гипотермических эффектов на переживающих срезах мозга теплокровных // Междунар. журн. прикл. фундам. исслед. 2017. Т. 2. С. 214.
  8. Мокрушин А.А. Улучшение кислотно-щелочного состава среды для длительного и обратимого криосохранения срезов мозга крыс // Цитология. 2022. Т. 64. С. 96—102. doi: 10.31857/S0041377122010084
  9. Пичугин Ю.И. Теоретические и практические аспекты современной криобиологии. Москва. 2013. С. 60—62.
  10. Сазонов Л А., Зайцев С.В. Действие сверхмалых доз (10–18—10–14 М) биологически активных веществ: общие закономерности, особенности и возможные механизмы // Биохимия. 1992. Т. 57. С. 1443—1460.
  11. Стволинский С.Л., Федорова Т.Н., Девятов А.А., Медведев О.С. Нейропротективное действие карнозина в условиях экспериментальной фокальной ишемии/реперфузии головного мозга // Журнал неврологии и психиатрии. 2017. Т. 12. С. 60—64. doi: 10.17116/jnervo201711712260-64
  12. Awan M., Buriak I., Fleck R., Fuller B., Goltsev A. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? // Regen. Med. 2020. V. 15. P. 1463—1491. doi: 10.2217/rme-2019-0145.
  13. Babizhayev M.A., Seguin M.C., Gueyne J., Evstigneeva R.P., Ageyeva E.A. L-carnosine (beta-alanyl-L-histidine) and carcinine (beta-alanylhistamine) act as natural antioxidants with hydroxyl-radical-scavenging and lipid-peroxidase activities // Biochem J. 1994. V. 304 (Pt 2). P. 509—516. doi: 10.1042/bj3040509.
  14. Bae O., Majid A. Role of histidine/histamine in carnosine-induced neuroprotection during ischemic brain damage // Brain Res. 2013. V. 1527. P. 246—254. doi: 10.1016/j.brainres.2013.07.004.
  15. Bartolac L.K., Lowe J.L., Koustas G., Grupen C.G. Effect of different penetrating and non-penetrating cryoprotectants and media temperature on the cryosurvival of vitrified in vitro produced porcine blastocysts // Anim. Sci. J. 2018.V. 89. P. 1230—1239. doi: 10.1111/asj.12996.
  16. Berezhnoy D.S., Stvolinsky S.L., Lopachev A.V., Kulikova O.I., Abaimov D.A., Fedorova T.N. Carnosine as an effective neuroprotector in brain pathology and potential neuromodulator in normal conditions // Amino Acids. 2019. V. 51. P. 139—150. doi: 10.1007/s00726-018-2667-7.
  17. Boldyrev A.A., Aldini G., Derave W. Physiology and pathophysiology of carnosine // Physiol. Rev. 2013. V. 93. P. 1803—1845. doi: 10.1152/physrev.00039.2012.
  18. Bonfanti L., Peretto P., De M.S., Fasolo A. Carnosine-related dipeptides in the mammalian brain // Prog. Neurobiol. 1999. V. 59. P. 333—353. doi: 10.1016/s0301-0082(99)00010-6.
  19. Caruso G. Unveiling the hidden therapeutic potential of carnosine, a molecule with a multimodal mechanism of action: a position paper // Molecules. 2022. V. 27. P. 1—14. doi: 10.3390/molecules27103303.
  20. Cho S., Wood A., Bowlby M.R. Brain Slices as Models for Neurodegenerative Disease and Screening Platforms to Identify Novel Therapeutics // Current Neuropharmacology. 2007. V. 5. P. 19—33.
  21. Dludla P.V., Jack B., Viraragavan A., Pheiffer C. A dose-dependent effect of dimethyl sulfoxide on lipid content, cell viability and oxidative stress in 3T3-L1 adipocytes // Toxicol. Rep. 2018. V. 5. P. 1014—1020. doi: 10.1016/j.toxrep.2018.10.002. eCollection 2018.
  22. Elliott G.D., Wang S., Fuller B.J. Cryoprotectants: a review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures // Cryobiology. 2017. V. 76. P. 74—91. doi: 10.1016/j.cryobiol.2017.04.004.
  23. Eroglu A., Russo M.J., Bieganski R., Fowler A. Intracellular trehalose improves the survival of cryopreserved mammalian cells // Nat. Biotechnol. 2000. V. 18. P. 163—167. doi: 10.1038/72608.
  24. Eroglu A., Toner M., Toth T.L. Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes // Fertility and Sterility. 2002. V. 77. P. 152—158. doi: 10.1016/s0015-0282(01)02959-4.
  25. Eroglu A. Cryopreservation of mammalian oocytes by using sugars: intra- and extracellular raffinose with small amounts of dimethylsulfoxide yields high cryosurvival, fertilization, and development rates // Cryobiology. 2010.V. 60. P. S54–S59.doi: 10.1016/j.cryobiol.2009.07.001.
  26. Giwa S., Lewis J.K., Alvarez L., Langer R., Roth A.E. The promise of organ and tissue preservation to transform medicine // Nat. Biotechnol. 2017. V. 35. P. 530—542. doi: 10.1038/nbt.3889.
  27. Hanslick J.L., Lau K., Noguchi K.K., Olney J.W. Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system // Neurobiol. Dis. 2009. V. 34. P. 1—10. doi: 10.1016/j.nbd.2008.11.006.
  28. Hasanein P., Felegari Z. Chelating effects of carnosine in ameliorating nickel-induced nephrotoxicity in rats // Can. J. Physiol.Pharm. 2017. V. 95. P. 1426—1432.
  29. Hipkiss A.R., Preston J.E., Himsworth D.T., Worthington V.C. Pluripotent protective effectsof carnosine, a naturally occurring dipeptide // Ann. N. Y. Acad. Sci. 1998. V. 854. P. 37—53. doi: 10.1111/j.1749-6632.1998.tb09890.x.
  30. Jacob S.W., de la Torre J.C. Pharmacology of dimethyl sulfoxide in cardiac and CNS damage // Pharmacol Rep. 2009. V. 61. P. 225—235. doi: 10.1016/s1734-1140(09)70026-x.
  31. Khama-Murad A.X., Pavlinova L.I., Mokrushin A.A. Neurotropic effect of exogenous L-carnosine in cultured slices of the olfactory cortex from rat brain // Bull. Exp. Biol. Med. 2008. V. 146. P. 1—3. doi: 10.1007/s10517-008-0227-y
  32. Khama-Murad A., Mokrushin A., Pavlinova L. Neuroprotective properties of L-carnosine in the brain slices exposed to autoblood in the hemorrhagic stroke model in vitro // Regul. Pept. 2011. V. 167. P. 65—69. doi: 10.1016/j.regpep.2010.11.007.
  33. Kubomura D., Matahira Y., Masui A. Intestinal absorption and bloodclearance of L-histidine-related compounds after ingestion of anserine in humans and comparison to anserine-containing diets // J. Agric. Food Chem. 2009. V. 57. P. 1781—1785. doi: 10.1021/jf8030875.
  34. Kohen R., Yamamoto Y., Cundy K.C., Ames B.N. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain // Proc. Natl. Acad. Sci. USA. 1988. V. 85. P. 3175—3179.
  35. Lenney J.F., George R.P., Weiss A.M., Kucera C.M., Chan P.W., Rinzler G.S. Human serum carnosinase: Characterization, distinction from cellular carnosinase, and activation by cadmium // Clin. Chim. Acta. 1982. V. 123. P. 221—231.
  36. Lenney J.F., Peppers S.C., Kucera-Orallo C.M., George R.P. Characterization of human tissue carnosinase // Biochem. J. 1985. V. 228. P. 653—660.
  37. Lopachev A.V., Lopacheva O.M., Akkuratov E.E., Stvolinski S.L., Fedorova T.N. Carnosine protects a primary cerebellar cell culture from acute NMDA toxicity // Neurochemical Journal. 2017. V. 11. P. 38—42. doi: 10.1016/j.ejphar.2020.173457.
  38. Mandumpal J.B., Kreck C.A., Mancera R. A molecular mechanism of solvent cryoprotection in aqueous DMSO solutions // Phys. Chem. Chem. Phys. 2010. V.13. P. 3839—3842. doi: 10.1039/c0cp02326d.
  39. Matsumura K., Hayashi F., Nagashima T. Molecular mechanisms of cell cryopreservation with polyampholytes studied by solid-state NMR // Communications Materials. 2021. V. 2. P. 116—121.
  40. Mazur P. Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing // J Gen. Physiol. 1963. V. 47. P. 347—369. doi: 10.1085/jgp.47.2.347.
  41. Mazur P. Cryobiology: the freezing of biological systems // Science. 1970. V. 168. P. 939—949. doi: 10.1126/science.168.3934.939.
  42. Mehta A., Prabhakar M., Kumar P. Excitotoxicity: Bridge to various triggers in neurodegenerative disorders // European Journal of Pharmacology. 2013. V. 698. P. 6—18. doi: 10.1016/j.ejphar.2012.10.032.
  43. Mokrushin A.A., Pavlinova L.I. Effects of the blood components on the AMPA and NMDA synaptic responses in brain slices in the onset of hemorrhagic stroke // Gen. Physiol. Biophys. 2013. V. 32. P. 489—504. doi: 10.4149/gpb_2013038.
  44. Mokrushin A.A. Effects cryopreservation of ionotropic glutamatergic receptor mechanisms in vitro // CryoLetters. 2015. V. 36. P. 353—362.
  45. Namura S., Ooboshi H., Liu J. Neuroprotection after cerebral ischemia // Ann. N Y Acad. Sci. 2013. V. 1278. P. 25—32. doi: 10.1111/nyas.12087.
  46. Obrenovitch T.P., Urenjak J. Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy // Progress Neurobiology. 1997. V. 51. P. 39. doi: 10.1016/s0301-0082(96)00049-4.
  47. Pepper E.D., Farrell M.J., Nord G., Finkel S.E. Antiglycation effects of carnosine and other compounds on the long-term survival of escherichia coli // Appl. Env. Microbiol. 2010. V. 76. P. 7925—7930. doi: 10.1128/AEM.01369-10.
  48. Pichugin Y., Fahy G.M., Morin R. Cryopreservation of rat hippocampal slices by Vitrification // Cryobiology. 2006. V. 52. P. 228—240. doi: 10.1016/j.cryobiol.2005.11.006.
  49. Qiu J., Hauske S.J., Zhang S. Identification and characterisation of carnostatine (san9812), a potent and selective carnosinase (cn1) inhibitor with in vivo activity // Amino Acids. 2019. V. 51. P. 7—16. doi: 10.1007/s00726-018-2601-z.
  50. Quyang L., Tian Y., Bao Y., Xu H., Cheng J. Carnosine decreased neuronal cell death through targeting glutamate system and astrocyte mitochondrial bioenergetics in cultured neuron/astrocyte exposed to ogd/recovery // Brain Res. Bull. 2016. V. 124. P. 76—84. doi: 10.1016/j.brainresbull.2016.03.019.
  51. Sassoe-Pognetto M., Cantino D., Panzanelli P., Verdundi C.L. Presynaptic co-localization of carnosine and glutamate in olfactory neurons // Neuroreport. 1993. V. 5. P. 7—10. doi: 10.1097/00001756-199310000-00001.
  52. Stvolinski S.L., Dobrota D., Mezeshova V., Lipta˘ı. T., Pronaıova N., Zalibera L., Boldyrev A. A. Carnosine and anserine in working muscles-study using proton NMR spectroscopy // Biokhimiia. 1992. V. 57. P. 1317—1323.
  53. Szydlowska K., Tymianski M. Calcium, ischemia and excitotoxicity // Cell calcium. 2010. V. 47. P. 122—129. doi: 10.1016/j.ceca.2010.01.003.
  54. Taylor M.J., Weegman B.P., Baicu S.C., Giwa S.E. New approaches to cryopreservation of cells, tissues, and organs // Transfus. Med. Hemotherapy. 2019. V. 46. P. 197—215. doi: 10.1159/000499453.
  55. Traynelis S.F., Cull-Candy S.D. Proton inhibition of N-methyl-D-aspartate receptor in cerebellar neurons // Nature. 1990. V. 345. P. 347. doi: 10.1038/345347a0.
  56. Teufel M., Saudek V., Ledig J.P. Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase // J. Biol. Chem. 2003. V. 278. P. 6521—6531. doi: 10.1074/jbc.M209764200.
  57. Vincent P., Mulle C. Kainate receptors in epilepsy and excitotoxicity // Neuroscience. 2009. V. 158. P. 309—323. doi: 10.1016/j.neuroscience.2008.02.066.
  58. Warren D., Bickler P., Clark J., Gregersen M. Hypothermia and rewarming injury in hippocampal neurons involves intracellular Ca2+ and glutamate excitotoxicity // Neuroscience. 2012. V. 207. P. 316—325. doi: 10.1016/j.neuroscience.2011.12.034.
  59. Whaley D., Damyar K., Witek R.P., Mendoza A. Cryopreservation: An Overview of Principles and Cell-Specific Considerations // Cell Transplant. 2021. V. 30. P. 963689721999617. doi: 10.1177/0963689721999617.
  60. Yuan C., Gao J., Guo J., Bai L., Marshall C. Dimethyl sulfoxide damages mitochondrial integrity and membrane potential in cultured astrocytes // PLoS ONE. 2014. V. 9. P. e107447. doi: 10.1371/journal.pone.0107447. eCollection 2014.
  61. Zhang X., Song L., Cheng X., Yang Y., Luan B., Jia L. Carnosine pretreatment protects against hypoxia-ischemia brain damage in the neonatal rat model // Eur. J. Pharm. 2011. V. 667. P. 202—207. doi: 10.1016/j.ejphar.2011.06.003.
  62. Zemke D., Krishnamurthy R., Majid A. Carnosine is neuroprotective in a mouse model of stroke // J. Cereb. Blood Flow Metab. 2005. V. 25. P. S313.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Изучение криопротективных свойств L-карнозина на срезах обонятельной коры мозга крыс (а) при измерении амплитуд НМДА потенциалов (б, в). а — схема тангенциального среза обонятельной коры мозга крыс с основными морфологическими структурами и локализациями стимулирующего и регистрирующего электродов: ЛОТ — латеральный обонятельный тракт, СЭ — стимулирующий электрод, ПК — пириформная кора, РЭ — регистрирующий электрод, б — фокальный потенциал, в срезе на электрическую стимуляцию ЛОТ с указанием постсинаптических компонентов: ранний АМПА потенциал и поздний НМДА потенциал (мкВ), в — в увеличенном масштабе НМДА потенциал — индикатор активности НМДА-зависимых механизмов. В работе исследовались только модификации НМДА потенциалов при действии L-карнозина при КС. Пунктирная линия, изолиния — потенциал среза в состоянии покоя; вертикальная стрелка указывает метод измерения амплитуд НМДА потенциала во временной точке 8 мс от артефакта стимуляции. Калибровка — как указано

Скачать (93KB)
3. Рис. 2. Влияние аппликации L-карнозина в разной концентрации на амплитуду НМДА потенциалов в срезах обонятельной коры крыс. Ось абсцисс — шкала условная. Разные концентрации L-карнозина испытывались на отдельной группе срезов (n = 12). Изменения амплитуд НМДА потенциалов по отношению к значениям до КС (контроль) оценивали непараметрическим U–критерием Вилкоксона–Манна–Уитни, р ≤ 0.05 (*)

Скачать (92KB)
4. Рис. 3. Воздействия преинкубации срезов в контроле без L-карнозина и с L-карнозином (20 мМ) на кислотно-щелочной уровень (рН) ИЦР до и после окончания КС (а), серым фоном — оптимальные диапазоны рН (рН 7.2—7.4), при которых поддерживаются амплитуды НМДА потенциалов, n = 7. Эффекты преинкубации срезов в контроле без L-карнозина и с L-карнозином (20 мМ) на модификацию амплитуд НМДА потенциалов до и после КС (б), достоверность различий значений рН замораживающего раствора (L-карнозин 20 мМ после КС) по сравнению со значениями до КС (контроль до КС без L-карнозина) определяли непараметрическим U–критерием Вилкоксона–Манна–Уитни, n = 7

Скачать (174KB)
5. Рис. 4. Изменения содержания свободной воды (набухание — вес срезов, мг) в срезах под влиянием L-карнозина (20 мМ) до и после КС (а), n = 5. Эффекты набухания среза под влиянием L-карнозина (20 мМ) на изменения амплитуд НМДА потенциалов до и после КС (б). Различия амплитуд НМДА потенциалов по сравнению со значениями до КС («контроль до КС») и после КС («без карнозина» и после КС с «карнозином, 20 мМ») определяли непараметрическим U–критерием Вилкоксона–Манна–Уитни, n = 5

Скачать (148KB)
6. Рис. 5. Тестирование L-карнозина (20 мМ) на возникновение эксайтотоксичности в срезах мозга в процессе отогревания после КС. По оси абсцисс — температуры раствора, при которых проводились измерения амплитуд НМДА потенциалов, шкала неравномерная, n = 9. Скорость отогревания срезов — 0.1 оC/мин. Остальные обозначения — на рисунке. Различия амплитуд НМДА потенциалов по отношению к значениям до КС (контроль) определяли непараметрическим U–критерием Вилкоксона–Манна–Уитни, р ≤ 0.05 (*)

Скачать (127KB)

© Российская академия наук, 2024