Bacillus subtilis 26D increases resistance to oil pollution of Bromopsis inermis plants
- Authors: Kuramshina Z.M.1, Sattarova L.R.1, Yamaleeva A.A.1, Maksimov I.V.2
-
Affiliations:
- Ufa University of Science and Technology
- Ufa Federal Research Center of the Russian Academy of Sciences
- Issue: No 3 (2025)
- Pages: 293-301
- Section: PLANT PHYSIOLOGY
- URL: https://archivog.com/1026-3470/article/view/686082
- DOI: https://doi.org/10.31857/S1026347025030047
- ID: 686082
Cite item
Full Text
Abstract
The effect of treating Bromopsis inermis (Leyss) seeds with bacteria of the Bacillus subtilis 26D strain and the oil-tolerant B. subtilis 26D+n line on the physiological and biochemical characteristics of plants under conditions of oil pollution of the soil was studied. It was shown that the B. subtilis 26D+n line, under conditions of cultivation of awnless brome plants on oil-contaminated soils, effectively stimulated growth, reducing the development of oxidative stress in tissues, in comparison with the control and plants inoculated with the original strain of B. subtilis 26D. Inducing tolerance to oil pollution of soil in plants using endophytic strains B. subtilis 26D+n may be due to their complex biological activity and adaptation to oil components.
Full Text

About the authors
Z. M. Kuramshina
Ufa University of Science and Technology
Author for correspondence.
Email: kuramshina_zilya@mail.ru
Стерлитамакский филиал
Russian Federation, Zaki Validi St. 32, Ufa, 450076L. R. Sattarova
Ufa University of Science and Technology
Email: kuramshina_zilya@mail.ru
Стерлитамакский филиал
Russian Federation, Zaki Validi St. 32, Ufa, 450076A. A. Yamaleeva
Ufa University of Science and Technology
Email: kuramshina_zilya@mail.ru
Стерлитамакский филиал
Russian Federation, Zaki Validi St. 32, Ufa, 450076I. V. Maksimov
Ufa Federal Research Center of the Russian Academy of Sciences
Email: kuramshina_zilya@mail.ru
Institute of Biochemistry and Genetics
Russian Federation, Oktyabrya Ave. 71, Ufa, 450054References
- Захарченко М. В., Люшин М. М., Мустафина Э. А. Соединения металлов в нефтях месторождений Оренбуржья // Нефтегазохимия. 2016. Т. 1. С. 61–63.
- Нафикова А. Р., Сурина О. Б., Хайруллин, Р.М., Максимов И. В. Влияние метаболитов штаммов 26Д и 11ВМ бактерии Bacillus subtilis на рост проростков и каллусов пшеницы // Агрохимия. 2018. № 5. С. 39–44. https://doi.org/10.7868/s000218811805006x.
- Шихалеева Г. Н., Будняк А. К., Шихалеев И. И., Иващенко О. Л. Модифицированная методика определения пролина в растительных объектах // Вісник Харківського національного університету ім. В. Н. Каразіна. Серія: біологія. 2014. Т. 21. С. 168–172.
- Arellano P., Tansey K., Balzter H., Tellkamp M. Plant family-specific impacts of petroleum pollution on biodiversity and leaf chlorophyll content in the amazon rainforest of Ecuador. // PLoS ONE. 2017. V. 12. № 1. Р. e0169867. https://doi.org/ 10.1371/journal.pone.0169867.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. // Analytical biochemistry. 1976. V.72. P. 248 –254. https://doi.org//10.1016/0003-2697(76)90527-3
- Cherepanova E. A., Galyautdinov I. V., Burkhanova G. F., Maksimov I. V. Isolation and identification of lipopeptides of Bacillus subtilis 26D // Applied biochemistry and microbiology. 2021. V. 57. № 5. P. 636–642. https://doi.org/10.1134/S0003683821050033
- Costa H., Gallego S. M., Tomaro M. L. Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons // Plant Science. 2002. V. 162. P. 939–945. https://doi.org/10.1016/S0168-9452(02)00051-1
- da Silva Correa H., Blum C. T., Galvão F., Maranho L. T. Effects of oil contamination on plant growth and development: A review // Environmental Science and Pollution Research. 2022. V. 29. P. 43501–43515. https://doi.org/10.1007/s11356-022-19939-9.
- Devatha C. P., Vishnu V. A., Purna Chandra, Rao J. Investigation of physical and chemical characteristics on soil due to crude oil contamination and its remediation // Applied Water Science. 2019. V. 9. P.89. https://doi.org/10.1007/s13201-019-0970-4.
- Fadiji A. E., Babalola O. O. Elucidating mechanisms of endophytes used in plant protection and other bioactivities with multifunctional prospects // Frontiers in Bioengineering and Biotechnology. 2020. V. 8. P.467. https://doi.org/10.3389/fbioe.2020.00467.
- Gkorezis P., Daghio M., Franzetti A., Van Hamme J. D., Sillen W., Vangronsveld J. The interaction between plants and bacteria in the remediation of petroleum hydrocarbons: An environmental perspective // Frontiers in Microbiology. 2016. V. 7. Art. 1836. https://doi.org/10.3389/fmicb.2016.01836
- Grifoni M., Rosellini I., Angelini P., Petruzzelli G., Pezzarossa B. The effect of residual hydrocarbons in soil following oil spillages on the growth of Zea mays plants // Environmental Pollution. 2020. V. 265. P.114950. https://doi.org/10.1016/j.envpol.2020.114950
- Ha-Tran D.M., Nguyen T. T.M., Hung S. H., Huang E., Huang C. C. Roles of plant growth-promoting rhizobacteria (PGPR) in stimulating salinity stress defense in plants: A review. // International Journal of Molecular Sciencesi. 2021. V. 2. P. 3154. https://doi.org/10.3390/ijms22063154
- Hunt L. J., Duca D., Dan T., Knopper L. D. Petroleum hydrocarbon (PHC) uptake in plants: a literature review // Environmental Pollution. 2019. V. 245. P.472–484. https://doi.org/10.1016/j.envpol.2018.11.012
- Karamchandani B. M., Pawar A. A., Pawar S. S., Syed S., Mone N. S., Dalvi S. G., Rahman P. K.S.M., Banat I. M., Satpute S. K. Biosurfactants’ multifarious functional potential for sustainable agricultural practices // Frontiers i in Bioengineering and Biotechnology. 2022. V. 10. P.1047279. https://doi.org/10.3389/fbioe.2022.1047279
- Kuramshina Z. M., Khairullin R. M. Endophytic strains of Bacillus subtilis promote drought resistance of plants // Rus. J. of Plant Physiology. 2023a. V.70. № 3. P. 259–268. https://doi.org/10.31857/s0015330322600760.
- Kuramshina Z. M., Khairullin R. M. Increasing the tolerance of Triticum aestivum L. to salt stress using endophytic strains of Bacillus subtilis // Russian Journal of Plant Physiology. 2023b. V.70. №3. P.293–300. https://doi.org/10.31857/s001533032260076X.
- Kuramshina Z. M., Khairullin R. M., Maksimov I. V. Endophytic bacteria Bacillus spp. in the formation of adaptive potential of plants // Russian Journal of Plant Physiology. 2023c. V. 70 P. 186. https://doi.org/10.1134/S1021443723602021.
- Kuramshina Z. M., Khairullin R. M., Smirnova Yu. V. The responsiveness of Triticum aestivum L. variety for inoculation by cells of endophytic strains Bacillus subtilis // Russian Agricultural Sciences. 2019. № 6. P. 3–6. https://doi.org/10.31857/S2500-2627201963-6
- Kuramshinaa Z. M., L. R. Sattarova, I. V. Maksimov. Increasing the resistance of wheat to oil pollution using endophytic bacteria Bacillus subtilis // Russian Journal of Plant Physiology. 2023d. V. 70. P. 124. https://doi.org/10.1134/S1021443723700188
- Kuramshina Z. M., Smirnova Y. V., Khairullin R. M. Increasing Triticum aestivum tolerance to cadmium stress through endophytic strains of Bacillus subtilis // Russian Journal of Plant Physiology. 2016. V.63.P. 636–644. https://doi.org/10.1134/S1021443716050083
- Le Mire G, Siah A., Brisset M.-N., Gaucher M., Deleu M., Jijakli M. H. Surfactin protects wheat against zymoseptoriatritici and activates both salicylic acid- and jasmonic acid-dependent defense responses // Agriculture. 2018. 8 (1). Р. 11. https://doi.org/10.3390/agriculture8010011
- Liu Y., Morelli M., Koskimäki J. J., Qin S., Zhu Y.-H., Zhang X. X. Editorial: Role of endophytic bacteria in improving plant stress resistance // Frontiers in Plant Science. 2022. V. 13. P 1106701. https://doi.org/10.3389/fpls.2022.1106701.
- Lumactud R., Shen S. Y., Lau M., Fulthorpe R. Bacterial endophytes isolated from plants in natural oil seep soils with chronic hydrocarbon contamination // Frontiers in Microbiology. 2016. V. 7. P755. https://doi.org/10.3389/fmicb.2016.00755
- Maksimov I. V., Singh B. P., Cherepanova E. A. Burkhanova G. F., Khairullin R. M. Prospects and applications of lipopeptide-producing bacteria for plant protection (Review) //Applied biochemistry and microbiology. 2020. V. 56. P. 15 https://doi.org/10.1134/S0003683820010135
- Marchut-Mikolajczyk O., Drożdżyński P., Pietrzyk1 D., Antczak T. Biosurfactant production and hydrocarbon degradation activity of endophytic bacteria isolated from Chelidonium majus L. // Microbial Cell Factories. 2018. V. 17. Art. 171. https://doi.org/10.1186/s12934-018-1017-5.
- Odukoya J., Lambert R., Sakrabani R. Understanding the impacts of crude oil and its induced abiotic stresses on agrifood production: A Review // Horticulturae. 2019. V. 5. №2. P. 47. https://doi.org/10.3390/horticulturae5020047
- Pawlik M., Płociniczak T., Thijs S., Pintelon I., Vangronsveld J., Piotrowska-Seget Z. Comparison of two inoculation methods of endophytic bacteria to enhance phytodegradation efficacy of an aged petroleum hydrocarbons polluted soil // Agronomy. 2020. V. 10. № 8. P. 1196. https://doi.org/10.3390/agronomy10081196
- Peele A.,Vekateswarulu T.C., Tammineedi J., Kanumuri L., Ravuru B. K., Dirisala V. R., Kodali V. P. Role of biosurfactants in bioremediation of oil pollution-A review // Petroleum. 2018. V. 4. № 3. P. 241–249. https://www.researchgate.net/publication/323754483.
- Pršic J., Ongena M.´ Elicitors of plant immunity triggered by beneficial bacteria // Frontiers in Plant Science. 2022. V. 11. Art. 594530. https://doi.org/10.3389/fpls.2020.594530
- Sorokan A., Veselova S., Benkovskaya G., Maksimov I. Endophytic strain Bacillus subtilis 26D increases levels of phytohormones and repairs growth of potato plants after colorado potato beetle damage // Plants. 2021.10 (5). Р. 923. https://doi.org/10.3390/plants10050923
- Veselova S. V., Burkhanova G. F., Nuzhnaya T. V. Maksimov I. V. Roles of ethylene and cytokinins in development of defense responses in Triticum aestivum plants infected with Septoria nodorum // Russian Journal of Plant Physiology. 2016. V.63. P. 609–619. https://doi.org/10.1134/S1021443716050150.
- Ziółkowska A., Wyszkowski M. Toxicity of petroleum substances to microorganisms and plants //Ecological Chemistry and Engineering. 2010. V.17. №1. P. 73 –82. https://www.researchgate.net/publication/258368640
- Zuzolo D., Guarino C., Tartaglia M., Sciarrillo R. Plant-soil-microbiota combination for the removal of total petroleum hydrocarbons (TPH): Аn in-field experiment // Frontiers in Microbiology. 2021. V. 11. P. 621581. https://doi.org/10.3389/fmicb.2020.621581
Supplementary files
