EXPERIMENTAL INVESTIGATION OF THE MECHANISMS OF SPONTANEOUS BENDING OF A VISCOUS JET
- 作者: Safronov A.A1, Koroteev A.A1, Agafonov A.E1, Grigor’ev A.L1, Filatov N.I1, Khlynov A.V1
-
隶属关系:
- State Scientific Center “Keldysh Research Center”
- 期: 编号 2 (2025)
- 页面: 76–84
- 栏目: Articles
- URL: https://archivog.com/1024-7084/article/view/687732
- DOI: https://doi.org/10.31857/S1024708425020074
- EDN: https://elibrary.ru/FWBJHM
- ID: 687732
如何引用文章
详细
作者简介
A. Safronov
State Scientific Center “Keldysh Research Center”
Email: a.a.safr@yandex.ru
Moscow, Russia
A. Koroteev
State Scientific Center “Keldysh Research Center”Moscow, Russia
A. Agafonov
State Scientific Center “Keldysh Research Center”Moscow, Russia
A. Grigor’ev
State Scientific Center “Keldysh Research Center”Moscow, Russia
N. Filatov
State Scientific Center “Keldysh Research Center”Moscow, Russia
A. Khlynov
State Scientific Center “Keldysh Research Center”Moscow, Russia
参考
- Walzel P. Koaleszenz von flussigkeitsstrahlen an brausen // Chem. Ing. Tech. 1980. V. 5. No. 8. P. 652–654.
- Safronov A.A., Koroteev A.A., Agafonov A.E. et al. Experimental Investigation of the Transverse Size of a Viscous Jet Flowing out of a Capillary Channel // Fluid Dynamics. 2024.
- Bejan A. On the buckling property of inviscid jets and the origin of turbulence // Lett. Heat Mass Transfer. 1981. V. 8. No. 3. P. 187–194.
- Ribe N.M., Habibi M., Bonn D. Stability of liquid rope coiling // Phys. of Fluids. 2006. V. 18. No. 8. 084102.
- Jingxuan T., Ribe N.M., Wu X., Shum H.S. Steady and unsteady buckling of viscous capillary jets and liquid bridges // Phys. Review Lett. 2020. V. 125. No. 10.
- Ентов В.М., Ярин А.Л. Динамика свободных струй и пленок вязких и реологически сложных жидкостей // Итоги науки и техники. Сер. Механика жидкости и газа. 1984. Т. 18. С. 112–197.
- Merrer M.L., Quere D., Clanet C. Buckling of viscous filaments of a fluid under compression stresses // Phys. Review Lett. 2012. V. 109. No. 6.
- Lin S.P., Vihinen I., Honohan A., Hudman M. Absolute and convective instability of a liquid jet in microgravity. NASA Report. Mechanical and Aeronautical Engineering Department Clarkson University Potsdam, New York, 1996. 6 p.
- Sunol F., Gonzalez-Cinca R. Liquid jet breakup and subsequent droplet dynamics under normal gravity and in microgravity conditions // Phys. Fluids. 2015. V. 27.
- Umemura A., Osaka J., Shinjo J. et al. Coherent capillary wave structure revealed by ISS experiments for spontaneous nozzle jet disintegration // Microgravity Sci Technol. 2020. V. 32. No. 3. P. 369–397.
- Сафронов А.А., Коротеев А.А., Григорьев А.Л., Филатов Н.И. Моделирование самоиндуцированного капиллярного распада струи вязкой жидкости // Изв. высших учебных заведений. Прикладная нелинейная динамика. 2023. Т. 31. № 6. С. 673–685.
- Ganan-Calvo A.M. A revision on Rayleigh capillary jet breakup // arXiv preprint. 2022. arXiv:2210.13426. 9 p. https://doi.org/10.48550/arXiv.2210.13426
- Wallace D.B., Hayes D.J., Bush J.M. Study of orifice fabrication technologies for the liquid droplet radiator. MicroFab Technologies, Inc., Piano, Texas, 1991.
补充文件
