Triazolopyrimidine Derivatives: An Updated Review on Recent Advances in Synthesis, Biological Activities and Drug Delivery Aspects


Cite item

Full Text

Abstract

Molecules containing triazolopyrimidine core showed diverse biological activities, including anti-Alzheimer's, anti-diabetes, anti-cancer, anti-microbial, anti-tuberculosis, anti-viral, anti-malarial, anti-inflammatory, anti-parkinsonism, and anti-glaucoma activities. Triazolopyrimidines have 8 isomeric structures, including the most stable 1,2,4-triazolo[1,5- a] pyrimidine ones. Triazolopyrimidines were obtained by using various chemical reactions, including a) 1,2,4-triazole nucleus annulation to pyrimidine, b) pyrimidines annulation to 1,2,4-triazole structure, c) 1,2,4-triazolo[l,5-a] pyrimidines rearrangement, and d) pyrimidotetrazine rearrangement. This review discusses synthetic methods, recent pharmacological actions and drug delivery perspectives of triazolopyrimidines.

About the authors

Ahmed Abdelkhalek

Department of Medicinal Chemistry, Faculty of Pharmacy, Zagazig University

Author for correspondence.
Email: info@benthamscience.net

Mohamed Attia

Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University

Email: info@benthamscience.net

Mohammad Kamal

Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Networ, West China Hospital, Sichuan University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Büyükafşar, K.; Yazar, A.; Düşmez, D.; Öztürk, H.; Polat, G.; Levent, A. Effect of trapidil, an antiplatelet and vasodilator agent on gentamicin-induced nephrotoxicity in rats. Pharmacol. Res., 2001, 44(4), 321-328. doi: 10.1006/phrs.2001.0864
  2. Polat, G.; Ümit Talas, D.; Polat, A.; Nayci, A. Atiş S.; Bağdatoğlu, Ö.; Çömelekoğlu, Ü.; Atik, U. Effects of triazolopyrimidine on lipid peroxidation and nitric oxide levels in the corticosteroid-impaired healing of rat tracheal anastomoses. Cell Biochem. Funct., 2005, 23(1), 39-45. doi: 10.1002/cbf.1126
  3. Johnson, T.C.; Martin, T.P.; Mann, R.K.; Pobanz, M.A. Penoxsulam-Structure–activity relationships of triazolopyrimidine sulfonamides. Bioorg. Med. Chem., 2009, 17(12), 4230-4240. doi: 10.1016/j.bmc.2009.02.010
  4. Renyu, Q.; Yuchao, L.; Kandegama, W.M.W.W.; Qiong, C.; Guangfu, Y. Recent applications of triazolopyrimidine-based bioactive compounds in medicinal and agrochemical chemistry. Mini Rev. Med. Chem., 2018, 18(9), 781-793. doi: 10.2174/1389557517666171101112850
  5. Singh, P.K.; Choudhary, S.; Kashyap, A.; Verma, H.; Kapil, S.; Kumar, M.; Arora, M.; Silakari, O. An exhaustive compilation on chemistry of triazolopyrimidine: A journey through decades. Bioorg. Chem., 2019, 88, 102919. doi: 10.1016/j.bioorg.2019.102919
  6. Pinheiro, S.; Pinheiro, E.M.C.; Muri, E.M.F.; Pessôa, J.C.; Cadorini, M.A.; Greco, S.J. Biological activities of 1,2,4triazolo1,5-apyrimidines and analogs. Med. Chem. Res., 2020, 29(10), 1751-1776. doi: 10.1007/s00044-020-02609-1
  7. Umar, T.; Gusain, S.; Raza, M.K.; Shalini, S.; Kumar, J.; Tiwari, M.; Hoda, N. Naphthalene-triazolopyrimidine hybrid compounds as potential multifunctional anti-Alzheimer’s agents. Bioorg. Med. Chem., 2019, 27(14), 3156-3166. doi: 10.1016/j.bmc.2019.06.004
  8. Gami, S.P.; Vilapara, K.V.; Khunt, H.R.; Babariya, J.S.; Naliapara, Y.T. Synthesis and antimicrobal activities of some novel triazolo 1,5-a pyrimidine derivatives. Int. Lett. Chem. Phys. Astronomy, 2014, 30, 127-134.
  9. Jameel, E.; Meena, P.; Maqbool, M.; Kumar, J.; Ahmed, W.; Mumtazuddin, S.; Tiwari, M.; Hoda, N.; Jayaram, B. Rational design, synthesis and biological screening of triazine-triazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur. J. Med. Chem., 2017, 136, 36-51. doi: 10.1016/j.ejmech.2017.04.064
  10. Kumar, J.; Meena, P.; Singh, A.; Jameel, E.; Maqbool, M.; Mobashir, M.; Shandilya, A.; Tiwari, M.; Hoda, N.; Jayaram, B. Synthesis and screening of triazolopyrimidine scaffold as multi-functional agents for Alzheimer’s disease therapies. Eur. J. Med. Chem., 2016, 119, 260-277. doi: 10.1016/j.ejmech.2016.04.053
  11. Huang, B.; Li, C.; Chen, W.; Liu, T.; Yu, M.; Fu, L.; Sun, Y.; Liu, H.; De Clercq, E.; Pannecouque, C.; Balzarini, J.; Zhan, P.; Liu, X. Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 3: Optimization of 1,2,4triazolo1,5-apyrimidine core via structure-based and physicochemical property-driven approaches. Eur. J. Med. Chem., 2015, 92, 754-765. doi: 10.1016/j.ejmech.2015.01.042
  12. Aghazadeh Tabrizi, M.; Baraldi, P.G.; Ruggiero, E.; Saponaro, G.; Baraldi, S.; Poli, G.; Tuccinardi, T.; Ravani, A.; Vincenzi, F.; Borea, P.A.; Varani, K. Synthesis and structure activity relationship investigation of triazolo1,5-apyrimidines as CB2 cannabinoid receptor inverse agonists. Eur. J. Med. Chem., 2016, 113, 11-27. doi: 10.1016/j.ejmech.2016.02.032
  13. Porter, D.W.; Bradley, M.; Brown, Z.; Canova, R.; Charlton, S.; Cox, B.; Hunt, P.; Kolarik, D.; Lewis, S.; O’Connor, D.; Reilly, J.; Spanka, C.; Tedaldi, L.; Watson, S.J.; Wermuth, R.; Press, N.J. The discovery of potent, orally bioavailable pyrazolo and triazolopyrimidine CXCR2 receptor antagonists. Bioorg. Med. Chem. Lett., 2014, 24(1), 72-76. doi: 10.1016/j.bmcl.2013.11.074
  14. Huang, L.H.; Zheng, Y.F.; Lu, Y.Z.; Song, C.J.; Wang, Y.G.; Yu, B.; Liu, H.M. Synthesis and biological evaluation of novel steroidal17,16-d1,2,4triazolo1,5-apyrimidi-nes. Steroids, 2012, 77(6), 710-715. doi: 10.1016/j.steroids.2012.03.002
  15. Zarguil, A.; Boukhris, S.; El Efrit, M.L.; Souizi, A.; Essassi, E.M. Easy access to triazoles, triazolopyrimidines, benzimidazoles and imidazoles from imidates. Tetrahedron Lett., 2008, 49(41), 5883-5886. doi: 10.1016/j.tetlet.2008.07.134
  16. Fizer, M.M.; Slivka, M.V.; Lendel, V.G. New method of synthesis of 3,5,6,7-tetrahydro-1,2,4triazolo1,5-apyrimi-dine-2(1H)-thione. Chem. Heterocycl. Compd., 2013, 49(8), 1243-1245. doi: 10.1007/s10593-013-1369-z
  17. Frizzo, C.P.; Scapin, E.; Marzari, M.R.B.; München, T.S.; Zanatta, N.; Bonacorso, H.G.; Buriol, L.; Martins, M.A.P. Ultrasound irradiation promotes the synthesis of new 1,2,4-triazolo1,5-apyrimidine. Ultrason. Sonochem., 2014, 21(3), 958-962. doi: 10.1016/j.ultsonch.2013.12.007
  18. Pada, R.; Ram, H.; Nandaniya, R.; Dodiya, D.; Shah, V. A one-pot multi component synthesis of triazolopyrimidines. OCAIJ, 2012, 8(11), 419-423.
  19. Ablajan, K.; Kamil, W.; Tuoheti, A.; Wan-Fu, S. An efficient three component one-pot synthesis of 5-Amino-7-aryl-7,8-dihydro-1,2,4 triazolo4,3-a-pyrimidine-6-carboni-triles. Molecules, 2012, 17(2), 1860-1869. doi: 10.3390/molecules17021860
  20. Shahnavaz, Z.; Khaligh, N.G.; Mihankhah, T.; Johan, M.R. Design, synthesis, characterization, and physical property determination of a new ionic liquid: the preparation of triazolo-pyrimidines at room temperature under metal-free conditions. Res. Chem. Intermed., 2020, 46(10), 4645-4658. doi: 10.1007/s11164-020-04226-4
  21. Shaabani, A.; Seyyedhamzeh, M.; Ganji, N.; Hamidzad Sangachin, M.; Armaghan, M. One-pot four-component synthesis of highly substituted 1,2,4triazolo1,5-apyrimidines. Mol. Divers., 2015, 19(4), 709-715. doi: 10.1007/s11030-015-9604-4
  22. Sirakanyan, S.N.; Spinelli, D.; Geronikaki, A.; Kartsev, V.G.; Hakobyan, E.K.; Hovakimyan, A.A. Synthesis of new heterocyclic systems: Pyrido3′2′4,5thieno(furo)2,3-e1,2,4triazolopyrimidines and an unusual ANRORC rearrangement in the fused pyrimidine series. ChemistrySelect, 2018, 3(39), 10938-10942. doi: 10.1002/slct.201802221
  23. Omar, A.M.; Abd El Razik, H.A.; Hazzaa, A.A.; El-Attar, M.A.Z.; El Demellawy, M.A.; Abdel Wahab, A.E.; El Hawash, S.A.M. New pyrimidines and triazolopyrimidines as antiproliferative and antioxidants with cyclooxygenase-1/2 inhibitory potential. Future Med. Chem., 2019, 11(13), 1583-1603. doi: 10.4155/fmc-2018-0285
  24. Nicolai, E.; Cure, G.; Goyard, J.; Kirchner, M.; Teulon, J.M.; Versigny, A.; Cazes, M.; Caussade, F.; Virone-Oddos, A.; Cloarec, A. Synthesis and SAR studies of novel triazolopyrimidine derivatives as potent, orally active Angiotensin II receptor antagonists. J. Med. Chem., 1994, 37(15), 2371-2386. doi: 10.1021/jm00041a016
  25. Abu-Hashem, A.A.; Hussein, H.A.R.; Abu-zied, K.M. Synthesis of novel 1,2,4-triazolopyrimidines and their evaluation as antimicrobial agents. Med. Chem. Res., 2017, 26(1), 120-130. doi: 10.1007/s00044-016-1733-5
  26. Daboun, H.A.; El-Reedy, A.M. A one step synthesis of new 4-aminopyrimidine derivatives: Preparation of tetrazolo-and s-triazolopyrimidines. Z. Naturforsch. B. J. Chem. Sci., 1983, 38(12), 1686-1689. doi: 10.1515/znb-1983-1223
  27. Said, S.A.; El-Sayed, H.A.; El-Farargy, A.F.; Amr, A.; Ibrahim, S.; Abdalla, M.M. Pharmacological activities of some synthesized substituted pyrazole, oxazole and triazolopyrimidine derivatives. Lat. Am. J. Pharm., 2016, 35, 1618-1625.
  28. Guetzoyan, L.J.; Spooner, R.A.; Lord, J.M.; Roberts, L.M.; Clarkson, G.J. Simple oxidation of pyrimidinylhydrazones to triazolopyrimidines and their inhibition of Shiga toxin trafficking. Eur. J. Med. Chem., 2010, 45(1), 275-283. doi: 10.1016/j.ejmech.2009.10.007
  29. El-Sayed, H.A.; El-Hashash, M.M.; Ahmed, A.E. Novel synthesis, ring transformation and anticancer activity of 1, 3-thiazine, pyrimidine and triazolo 1,5-a pyrimidine derivatives. Bull. Chem. Soc. Ethiop., 2018, 32(3), 513-522. doi: 10.4314/bcse.v32i3.10
  30. Abdelghani, E.; Said, S.A.; Assy, M.G.; Abdel Hamid, A.M. Synthesis and antimicrobial evaluation of some new pyrimidines and condensed pyrimidines. Arab. J. Chem., 2017, 10, S2926-S2933. doi: 10.1016/j.arabjc.2013.11.025
  31. Said, M.A.; Eldehna, W.M.; Nocentini, A.; Bonardi, A.; Fahim, S.H.; Bua, S.; Soliman, D.H.; Abdel-Aziz, H.A.; Gratteri, P.; Abou-Seri, S.M.; Supuran, C.T. Synthesis, biological and molecular dynamics investigations with a series of triazolopyrimidine/triazole-based benzenesulfonamides as novel carbonic anhydrase inhibitors. Eur. J. Med. Chem., 2020, 185, 111843. doi: 10.1016/j.ejmech.2019.111843
  32. Zhang, N.; Ayral-Kaloustian, S.; Nguyen, T.; Afragola, J.; Hernandez, R.; Lucas, J.; Gibbons, J.; Beyer, C. Synthesis and SAR of 1,2,4 triazolo1,5-apyrimidines, a class of anticancer agents with a unique mechanism of tubulin inhibition. J. Med. Chem., 2007, 50(2), 319-327. doi: 10.1021/jm060717i
  33. Beyer, C.F.; Zhang, N.; Hernandez, R.; Vitale, D.; Lucas, J.; Nguyen, T.; Discafani, C.; Ayral-Kaloustian, S.; Gibbons, J.J. TTI-237: a novel microtubule-active compound with in vivo antitumor activity. Cancer Res., 2008, 68(7), 2292-2300. doi: 10.1158/0008-5472.CAN-07-1420
  34. Pogaku, V.; Gangarapu, K.; Basavoju, S.; Tatapudi, K.K.; Katragadda, S.B. Design, synthesis, molecular modelling, ADME prediction and anti-hyperglycemic evaluation of new pyrazole-triazolopyrimidine hybrids as potent α-glucosidase inhibitors. Bioorg. Chem., 2019, 93, 103307. doi: 10.1016/j.bioorg.2019.103307
  35. Zuniga, E.S.; Korkegian, A.; Mullen, S.; Hembre, E.J.; Ornstein, P.L.; Cortez, G.; Biswas, K.; Kumar, N.; Cramer, J.; Masquelin, T.; Hipskind, P.A.; Odingo, J.; Parish, T. The synthesis and evaluation of triazolopyrimidines as anti-tubercular agents. Bioorg. Med. Chem., 2017, 25(15), 3922-3946. doi: 10.1016/j.bmc.2017.05.030
  36. Chen, Q.; Liu, Z.M.; Chen, C.N.; Jiang, L.L.; Yang, G.F. Synthesis and fungicidal activities of new 1,2,4-triazolo1,5-apyrimidines. Chem. Biodivers., 2009, 6(8), 1254-1265. doi: 10.1002/cbdv.200800168
  37. Uryu, S.; Tokuhiro, S.; Murasugi, T.; Oda, T. A novel compound, RS-1178, specifically inhibits neuronal cell death mediated by β-amyloid-induced macrophage activation in vitro. Brain Res., 2002, 946(2), 298-306. doi: 10.1016/S0006-8993(02)02898-6
  38. Chen, C.N.; Lv, L.L.; Ji, F.Q.; Chen, Q.; Xu, H.; Niu, C.W.; Xi, Z.; Yang, G.F. Design and synthesis of N-2,6-difluorophenyl-5-methoxyl-1,2,4-triazolo1,5-a-pyrimidi-ne-2-sulfonamide as acetohydroxyacid synthase inhibitor. Bioorg. Med. Chem., 2009, 17(8), 3011-3017. doi: 10.1016/j.bmc.2009.03.018
  39. Li, H.; Tatlock, J.; Linton, A.; Gonzalez, J.; Jewell, T.; Patel, L.; Ludlum, S.; Drowns, M.; Rahavendran, S.V.; Skor, H.; Hunter, R.; Shi, S.T.; Herlihy, K.J.; Parge, H.; Hickey, M.; Yu, X.; Chau, F.; Nonomiya, J.; Lewis, C. Discovery of (R)-6-Cyclopentyl-6-(2-(2,6-diethylpyridin-4-yl)ethyl)-3-((5,7-dimethyl-1,2,4triazolo1,5-apyrimidin-2-yl) methyl)-4-hydroxy-5,6-dihydropyran-2-one (PF-00868554) as a potent and orally available hepatitis c virus polymerase inhibitor. J. Med. Chem., 2009, 52(5), 1255-1258. doi: 10.1021/jm8014537
  40. Peng, H.; Kumaravel, G.; Yao, G.; Sha, L.; Wang, J.; Van Vlijmen, H.; Bohnert, T.; Huang, C.; Vu, C.B.; Ensinger, C.L.; Chang, H.; Engber, T.M.; Whalley, E.T.; Petter, R.C. Novel bicyclic piperazine derivatives of triazolotriazine and triazolopyrimidines as highly potent and selective adenosine A2A receptor antagonists. J. Med. Chem., 2004, 47(25), 6218-6229. doi: 10.1021/jm0494321
  41. Alam, F.; Shafique, Z.; Amjad, S.T.; Bin Asad, M.H.H. Enzymes inhibitors from natural sources with antidiabetic activity: A review. Phytother. Res., 2019, 33(1), 41-54. doi: 10.1002/ptr.6211
  42. Abuelizz, H.A.; Iwana, N.A.N.I.; Ahmad, R.; Anouar, E.H.; Marzouk, M.; Al-Salahi, R. Synthesis, biological activity and molecular docking of new tricyclic series as α-glucosidase inhibitors. BMC Chem., 2019, 13(1), 52. doi: 10.1186/s13065-019-0560-4
  43. Pogaku, V.; Krishnan, R.; Basavoju, S. Synthesis and biological evaluation of new benzod1,2,3triazol-1-yl-pyrazole-based dihydro-1,2,4triazolo4,3-apyrimidines as potent antidiabetic, anticancer and antioxidant agents. Res. Chem. Intermed., 2021, 47(2), 551-571. doi: 10.1007/s11164-020-04285-7
  44. Jansen, J.; Karges, W.; Rink, L. Zinc and diabetes - clinical links and molecular mechanisms. J. Nutr. Biochem., 2009, 20(6), 399-417. doi: 10.1016/j.jnutbio.2009.01.009
  45. Song, Y.; Wang, J.; Li, X.; Cai, L. Zinc and the diabetic heart. Biometals, 2005, 18(4), 325-332. doi: 10.1007/s10534-005-3689-7
  46. Coulston, L.; Dandona, P. Insulin-like effect of zinc on adipocytes. Diabetes, 1980, 29(8), 665-667. doi: 10.2337/diab.29.8.665
  47. Esteban-Parra, G.M.; Sebastián, E.S.; Cepeda, J.; Sánchez-González, C.; Rivas-García, L.; Llopis, J.; Aranda, P.; Sánchez-Moreno, M.; Quirós, M.; Rodríguez-Diéguez, A. Anti-diabetic and anti-parasitic properties of a family of luminescent zinc coordination compounds based on the 7-amino-5-methyl-1,2,4-triazolo1,5-apyrimidine ligand. J. Inorg. Biochem., 2020, 212, 111235. doi: 10.1016/j.jinorgbio.2020.111235
  48. Kawahara, K.; Hohjoh, H.; Inazumi, T.; Tsuchiya, S.; Sugimoto, Y. Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2015, 1851(4), 414-421. doi: 10.1016/j.bbalip.2014.07.008
  49. Said, S.A.; Amr, A.E.G.E.; Sabry, N.M.; Abdalla, M.M. Analgesic, anticonvulsant and anti-inflammatory activities of some synthesized benzodiazipine, triazolopyrimidine and bis-imide derivatives. Eur. J. Med. Chem., 2009, 44(12), 4787-4792. doi: 10.1016/j.ejmech.2009.07.013
  50. Rossi, R.; Ciofalo, M. An updated review on the synthesis and antibacterial activity of molecular hybrids and conjugates bearing imidazole moiety. Molecules, 2020, 25(21), 5133. doi: 10.3390/molecules25215133
  51. Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: no ESKAPE! An update from the infectious diseases society of America. Clin. Infect. Dis., 2009, 48(1), 1-12. doi: 10.1086/595011
  52. Jackson, N.; Czaplewski, L.; Piddock, L.J.V. Discovery and development of new antibacterial drugs: learning from experience? J. Antimicrob. Chemother., 2018, 73(6), 1452-1459. doi: 10.1093/jac/dky019
  53. Abdel-Aziem, A.; El-Gendy, M.S.; Abdelhamid, A.O. Synthesis and antimicrobial activities of pyrido2,3-dpyrimidine, pyridotriazolopyrimidine, triazolopyrimidine, and pyrido2,3-d:6,5d’dipyrimidine derivatives. Eur. J. Chem., 2012, 3(4), 455-460. doi: 10.5155/eurjchem.3.4.455-460.683
  54. Argăseală A.; Maxim, C.; Badea, M.; Ioniță L.; Chifiriuc, M.C.; Rostas, A.M.; Bacalum, M.; Răileanu, M.; Ruţă L.L.; Farcaşanu, I.C.; Iorgulescu, E.E.; Olar, R. Insights into structure and biological activity of copper (II) and zinc (II) complexes with triazolopyrimidine ligands. Molecules, 2022, 27(3), 765. doi: 10.3390/molecules27030765
  55. Istanbullu, H.; Bayraktar, G.; Ozturk, I.; Coban, R.; Saylam, M. Design, synthesis and bioactivity studies of novel triazolopyrimidinone compounds. J Res Pharm., 2022, 26(1), 231-242.
  56. Du, H.; Ding, M.; Luo, N.; Shi, J.; Huang, J.; Bao, X. Design, synthesis, crystal structure and in vitro antimicrobial activity of novel 1,2,4-triazolo1,5-apyrimidine-containing quinazolinone derivatives. Mol. Divers., 2021, 25(2), 711-722. doi: 10.1007/s11030-020-10043-z
  57. Tee, E.H.L.; Karoli, T.; Ramu, S.; Huang, J.X.; Butler, M.S.; Cooper, M.A. Synthesis of essramycin and comparison of its antibacterial activity. J. Nat. Prod., 2010, 73(11), 1940-1942. doi: 10.1021/np100648q
  58. Wang, H.; Hesek, D.; Lee, M.; Lastochkin, E.; Oliver, A.G.; Chang, M.; Mobashery, S. The natural product essramycin and three of its isomers are devoid of antibacterial activity. J. Nat. Prod., 2016, 79(4), 1219-1222. doi: 10.1021/acs.jnatprod.6b00057
  59. Seung, K.J.; Keshavjee, S.; Rich, M.L. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb. Perspect. Med., 2015, 5(9), a017863. doi: 10.1101/cshperspect.a017863
  60. Patil, V.; Kale, M.; Raichurkar, A.; Bhaskar, B.; Prahlad, D.; Balganesh, M.; Nandan, S.; Shahul Hameed, P. Design and synthesis of triazolopyrimidine acylsulfonamides as novel anti-mycobacterial leads acting through inhibition of acetohydroxyacid synthase. Bioorg. Med. Chem. Lett., 2014, 24(9), 2222-2225. doi: 10.1016/j.bmcl.2014.02.054
  61. Fodor, E.; Smith, M. The PA subunit is required for efficient nuclear accumulation of the PB1 subunit of the influenza A virus RNA polymerase complex. J. Virol., 2004, 78(17), 9144-9153. doi: 10.1128/JVI.78.17.9144-9153.2004
  62. Neumann, G.; Brownlee, G.G.; Fodor, E.; Kawaoka, Y. Orthomyxovirus replication, transcription, and polyadenylation. Curr. Top. Microbiol. Immunol., 2004, 283, 121-143. doi: 10.1007/978-3-662-06099-5_4
  63. Massari, S.; Nannetti, G.; Desantis, J.; Muratore, G.; Sabatini, S.; Manfroni, G.; Mercorelli, B.; Cecchetti, V.; Palù, G.; Cruciani, G.; Loregian, A.; Goracci, L.; Tabarrini, O. A broad anti-influenza hybrid small molecule that potently disrupts the interaction of polymerase acidic protein–basic protein 1 (PA-PB1) subunits. J. Med. Chem., 2015, 58(9), 3830-3842. doi: 10.1021/acs.jmedchem.5b00012
  64. Massari, S.; Bertagnin, C.; Pismataro, M.C.; Donnadio, A.; Nannetti, G.; Felicetti, T.; Di Bona, S.; Nizi, M.G.; Tensi, L.; Manfroni, G.; Loza, M.I.; Sabatini, S.; Cecchetti, V.; Brea, J.; Goracci, L.; Loregian, A.; Tabarrini, O. Synthesis and characterization of 1,2,4-triazolo1,5-apyrimidine-2-carboxamide-based compounds targeting the PA-PB1 interface of influenza A virus polymerase. Eur. J. Med. Chem., 2021, 209, 112944. doi: 10.1016/j.ejmech.2020.112944
  65. Pismataro, M.C.; Felicetti, T.; Bertagnin, C.; Nizi, M.G.; Bonomini, A.; Barreca, M.L.; Cecchetti, V.; Jochmans, D.; De Jonghe, S.; Neyts, J.; Loregian, A.; Tabarrini, O.; Massari, S. 1,2,4-triazolo1,5-apyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors. Eur. J. Med. Chem., 2021, 221, 113494. doi: 10.1016/j.ejmech.2021.113494
  66. Beaumont, T.; van Nuenen, A.; Broersen, S.; Blattner, W.A.; Lukashov, V.V.; Schuitemaker, H. Reversal of human immunodeficiency virus type 1 IIIB to a neutralization-resistant phenotype in an accidentally infected laboratory worker with a progressive clinical course. J. Virol., 2001, 75(5), 2246-2252. doi: 10.1128/JVI.75.5.2246-2252.2001
  67. Doi, N.; Yokoyama, M.; Koma, T.; Kotani, O.; Sato, H.; Adachi, A.; Nomaguchi, M. Concomitant enhancement of HIV-1 replication potential and neutralization-resistance in concert with three adaptive mutations in Env V1/C2/C4 domains. Front. Microbiol., 2019, 10, 2. doi: 10.3389/fmicb.2019.00002
  68. Huang, B.; Kang, D.; Tian, Y.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Design, synthesis, and biological evaluation of piperidinyl‐substituted 1,2,4triazolo1,5‐apyrimidine derivatives as potential anti‐HIV‐1 agents with reduced cytotoxicity. Chem. Biol. Drug Des., 2021, 97(1), 67-76. doi: 10.1111/cbdd.13760
  69. Kamal, S.M. Hepatitis C treatment in the era of direct-acting antiviral agents: challenges in developing countries. Hepatitis C in Developing Countries: Current and Future Challenges; Elsevier: Amsterdam, 2018, pp. 209-246.
  70. Wu, J.; Yao, N.; Walker, M.; Hong, Z. Recent advances in discovery and development of promising therapeutics against hepatitis C virus NS5B RNA-dependent RNA polymerase. Mini Rev. Med. Chem., 2005, 5(12), 1103-1112. doi: 10.2174/138955705774933310
  71. Singer, R.A.; Ragan, J.A.; Bowles, P.; Chisowa, E.; Conway, B.G.; Cordi, E.M.; Leeman, K.R.; Letendre, L.J.; Sieser, J.E.; Sluggett, G.W.; Stanchina, C.L.; Strohmeyer, H.; Blunt, J.; Taylor, S.; Byrne, C.; Lynch, D.; Mullane, S.; O’Sullivan, M.M.; Whelan, M. Synthesis of Filibuvir. Part I. Diastereoselective preparation of a β-Hydroxy alkynyl oxazolidinone and conversion to a 6,6-disubstituted 2H-pyranone. Org. Process Res. Dev., 2014, 18(1), 26-35. doi: 10.1021/op4002356
  72. Sharma, A.; Tiwari, S.; Deb, M.K.; Marty, J.L. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): a global pandemic and treatment strategies. Int. J. Antimicrob. Agents, 2020, 56(2), 106054. doi: 10.1016/j.ijantimicag.2020.106054
  73. Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(21), 11727-11734. doi: 10.1073/pnas.2003138117
  74. Yin, W.; Mao, C.; Luan, X.; Shen, D.D.; Shen, Q.; Su, H.; Wang, X.; Zhou, F.; Zhao, W.; Gao, M.; Chang, S.; Xie, Y-C.; Tian, G.; Jiang, H-W.; Tao, S-C.; Shen, J.; Jiang, Y.; Jiang, H.; Xu, Y.; Zhang, S.; Zhang, Y.; Xu, H.E. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science, 2020, 368(6498), 1499-1504. doi: 10.1126/science.abc1560
  75. Karthic, A.; Kesarwani, V.; Singh, R.K.; Yadav, P.K.; Chaturvedi, N.; Chauhan, P.; Yadav, B.S.; Kushwaha, S.K. Computational analysis reveals monomethylated triazolopyrimidine as a novel inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Molecules, 2022, 27(3), 801. doi: 10.3390/molecules27030801
  76. Giraud, F.; Guillon, R.; Logé, C.; Pagniez, F.; Picot, C.; Borgne, M.L.; Pape, P.L. Synthesis and structure–activity relationships of 2-phenyl-1-(pyridinyl- and piperidinylmethyl)amino-3-(1H-1,2,4-triazol-1-yl)propan-2-ols as antifungal agents. Bioorg. Med. Chem. Lett., 2009, 19(2), 301-304. doi: 10.1016/j.bmcl.2008.11.101
  77. Masubuchi, M.; Ebiike, H.; Kawasaki, K.; Sogabe, S.; Morikami, K.; Shiratori, Y.; Tsujii, S.; Fujii, T.; Sakata, K.; Hayase, M.; Shindoh, H.; Aoki, Y.; Ohtsuka, T.; Shimma, N. Synthesis and biological activities of benzofuran antifungal agents targeting fungal N-myristoyltransferase. Bioorg. Med. Chem., 2003, 11(20), 4463-4478. doi: 10.1016/S0968-0896(03)00429-2
  78. Khabnadideh, S.; Rezaei, Z.; Pakshir, K.; Zomorodian, K.; Ghafari, N. Synthesis and antifungal activity of benzimidazole, benzotriazole and aminothiazole derivatives. Res. Pharm. Sci., 2012, 7(2), 65.
  79. Said, A.B.; Rahmouni, A.; Daami-Ramadib, M.; Romdhane, A.; Janneta, H.B. Design and synthesis of new antimicrobial 1,2,4triazolo 1,5-cpyrimidines. J. tunisian Chem. Soc., 2017, 19, 94-104.
  80. Amin, N.H.; El-Saadi, M.T.; Ibrahim, A.A.; Abdel-Rahman, H.M. Design, synthesis and mechanistic study of new 1,2,4-triazole derivatives as antimicrobial agents. Bioorg. Chem., 2021, 111, 104841. doi: 10.1016/j.bioorg.2021.104841
  81. Cohee, L.M.; Laufer, M.K. Malaria in children. Pediatr. Clin., 2017, 64(4), 851-866.
  82. Phillips, M.A.; Rathod, P.K. Plasmodium dihydroorotate dehydrogenase: a promising target for novel anti-malarial chemotherapy. Infect. Disord. Drug Targets, 2010, 10(3), 226-239. doi: 10.2174/187152610791163336
  83. Chu, X.M.; Wang, C.; Wang, W.L.; Liang, L.L.; Liu, W.; Gong, K.K.; Sun, K.L. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2019, 166, 206-223. doi: 10.1016/j.ejmech.2019.01.047
  84. Phillips, M.A.; Lotharius, J.; Marsh, K.; White, J.; Dayan, A.; White, K.L.; Njoroge, J.W.; El Mazouni, F.; Lao, Y.; Kokkonda, S.; Tomchick, D.R.; Deng, X.; Laird, T.; Bhatia, S.N.; March, S.; Ng, C.L.; Fidock, D.A.; Wittlin, S.; Lafuente-Monasterio, M.; Benito, F.J.G.; Alonso, L.M.S.; Martinez, M.S.; Jimenez-Diaz, M.B.; Bazaga, S.F.; Angulo-Barturen, I.; Haselden, J.N.; Louttit, J.; Cui, Y.; Sridhar, A.; Zeeman, A.M.; Kocken, C.; Sauerwein, R.; Dechering, K.; Avery, V.M.; Duffy, S.; Delves, M.; Sinden, R.; Ruecker, A.; Wickham, K.S.; Rochford, R.; Gahagen, J.; Iyer, L.; Riccio, E.; Mirsalis, J.; Bathhurst, I.; Rueckle, T.; Ding, X.; Campo, B.; Leroy, D.; Rogers, M.J.; Rathod, P.K.; Burrows, J.N.; Charman, S.A. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Sci. Transl. Med., 2015, 7(296), 296ra111. doi: 10.1126/scitranslmed.aaa6645
  85. Boechat, N.; Pinheiro, L.C.S.; Silva, T.S.; Aguiar, A.C.C.; Carvalho, A.S.; Bastos, M.M.; Costa, C.C.P.; Pinheiro, S.; Pinto, A.C.; Mendonça, J.S.; Dutra, K.D.B.; Valverde, A.L.; Santos-Filho, O.A.; Ceravolo, I.P.; Krettli, A.U. New trifluoromethyl triazolopyrimidines as anti-Plasmodium falciparum agents. Molecules, 2012, 17(7), 8285-8302. doi: 10.3390/molecules17078285
  86. Gujjar, R.; Marwaha, A.; El Mazouni, F.; White, J.; White, K.L.; Creason, S.; Shackleford, D.M.; Baldwin, J.; Charman, W.N.; Buckner, F.S.; Charman, S.; Rathod, P.K.; Phillips, M.A. Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J. Med. Chem., 2009, 52(7), 1864-1872. doi: 10.1021/jm801343r
  87. Silveira, F.F.; de Souza, J.O.; Hoelz, L.V.B.; Campos, V.R.; Jabor, V.A.P.; Aguiar, A.C.C.; Nonato, M.C.; Albuquerque, M.G.; Guido, R.V.C.; Boechat, N.; Pinheiro, L.C.S. Comparative study between the anti-P. falciparum activity of triazolopyrimidine, pyrazolopyrimidine and quinoline derivatives and the identification of new PfDHODH inhibitors. Eur. J. Med. Chem., 2021, 209, 112941. doi: 10.1016/j.ejmech.2020.112941
  88. Relitti, N.; Federico, S.; Pozzetti, L.; Butini, S.; Lamponi, S.; Taramelli, D.; D’Alessandro, S.; Martin, R.E.; Shafik, S.H.; Summers, R.L.; Babij, S.K.; Habluetzel, A.; Tapanelli, S.; Caldelari, R.; Gemma, S.; Campiani, G. Synthesis and biological evaluation of benzhydryl-based antiplasmodial agents possessing Plasmodium falciparum chloroquine resistance transporter (PfCRT) inhibitory activity. Eur. J. Med. Chem., 2021, 215, 113227. doi: 10.1016/j.ejmech.2021.113227
  89. Pavadai, E.; El Mazouni, F.; Wittlin, S.; de Kock, C.; Phillips, M.A.; Chibale, K. Identification of new human malaria parasite Plasmodium falciparum dihydroorotate dehydrogenase inhibitors by pharmacophore and structure-based virtual screening. J. Chem. Inf. Model., 2016, 56(3), 548-562. doi: 10.1021/acs.jcim.5b00680
  90. Boller, F.; Forette, F. Alzheimer’s disease and THA: a review of the cholinergic theory and of preliminary results. Biomed. Pharmacother., 1989, 43(7), 487-491. doi: 10.1016/0753-3322(89)90109-1
  91. Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70. doi: 10.1111/ene.13439
  92. Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115. doi: 10.2174/1570159X13666150716165726
  93. Kumar, J.; Gill, A.; Shaikh, M.; Singh, A.; Shandilya, A.; Jameel, E.; Sharma, N.; Mrinal, N.; Hoda, N.; Jayaram, B. Pyrimidine-triazolopyrimidine and pyrimidine-pyridine hybrids as potential acetylcholinesterase inhibitors for Alzheimer’s disease. ChemistrySelect, 2018, 3(2), 736-747. doi: 10.1002/slct.201702599
  94. Bahbah, E.I.; Ghozy, S.; Attia, M.S.; Negida, A.; Emran, T.B.; Mitra, S.; Albadrani, G.M.; Abdel-Daim, M.M.; Uddin, M.S.; Simal-Gandara, J. Molecular mechanisms of astaxanthin as a potential neurotherapeutic agent. Mar. Drugs, 2021, 19(4), 201. doi: 10.3390/md19040201
  95. Alonso, A.D.; Cohen, L.S.; Corbo, C.; Morozova, V.; ElIdrissi, A.; Phillips, G.; Kleiman, F.E. Hyperphosphorylation of tau associates with changes in its function beyond microtubule stability. Front. Cell. Neurosci., 2018, 12, 338. doi: 10.3389/fncel.2018.00338
  96. Soliman, H.M.; Ghonaim, G.A.; Gharib, S.M.; Chopra, H.; Farag, A.K.; Hassanin, M.H.; Nagah, A.; Emad-Eldin, M.; Hashem, N.E.; Yahya, G.; Emam, S.E.; Hassan, A.E.A.; Attia, M.S. Exosomes in Alzheimer’s disease: From being pathological players to potential diagnostics and therapeutics. Int. J. Mol. Sci., 2021, 22(19), 10794. doi: 10.3390/ijms221910794
  97. Lou, K.; Yao, Y.; Hoye, A.T.; James, M.J.; Cornec, A.S.; Hyde, E.; Gay, B.; Lee, V.M.Y.; Trojanowski, J.Q.; Smith, A.B., III; Brunden, K.R.; Ballatore, C. Brain-penetrant, orally bioavailable microtubule-stabilizing small molecules are potential candidate therapeutics for Alzheimer’s disease and related tauopathies. J. Med. Chem., 2014, 57(14), 6116-6127. doi: 10.1021/jm5005623
  98. Oukoloff, K.; Nzou, G.; Varricchio, C.; Lucero, B.; Alle, T.; Kovalevich, J.; Monti, L.; Cornec, A.S.; Yao, Y.; James, M.J.; Trojanowski, J.Q.; Lee, V.M.Y.; Smith, A.B., III; Brancale, A.; Brunden, K.R.; Ballatore, C. Evaluation of the structure–activity relationship of microtubule-targeting 1,2,4-triazolo1,5-apyrimidines identifies new candidates for neurodegenerative tauopathies. J. Med. Chem., 2021, 64(2), 1073-1102. doi: 10.1021/acs.jmedchem.0c01605
  99. Aisen, P.S. The development of anti-amyloid therapy for Alzheimer’s disease. CNS Drugs, 2005, 19(12), 989-996. doi: 10.2165/00023210-200519120-00002
  100. Sturchio, A.; Dwivedi, A.K.; Young, C.B.; Malm, T.; Marsili, L.; Sharma, J.S.; Mahajan, A.; Hill, E.J.; Andaloussi, S.E.L.; Poston, K.L.; Manfredsson, F.P.; Schneider, L.S.; Ezzat, K.; Espay, A.J. High cerebrospinal amyloid-β 42 is associated with normal cognition in individuals with brain amyloidosis. EClinicalMedicine, 2021, 38, 100988. doi: 10.1016/j.eclinm.2021.100988
  101. Gouwens, L.K.; Makoni, N.J.; Rogers, V.A.; Nichols, M.R. Amyloid-β42 protofibrils are internalized by microglia more extensively than monomers. Brain Res., 2016, 1648, 485-495. doi: 10.1016/j.brainres.2016.08.016
  102. Lee, C.Y.D.; Landreth, G.E. The role of microglia in amyloid clearance from the AD brain. J. Neural Transm. (Vienna), 2010, 117(8), 949-960. doi: 10.1007/s00702-010-0433-4
  103. Song, F.; Xia, L.; Ji, P.; Tang, Y.; Huang, Z.; Zhu, L.; Zhang, J.; Wang, J.; Zhao, G.; Ge, H.; Zhang, Y.; Wang, Y. Human dCTP pyrophosphatase 1 promotes breast cancer cell growth and stemness through the modulation on 5-methyl-dCTP metabolism and global hypomethylation. Oncogenesis, 2015, 4(6), e159-e159. doi: 10.1038/oncsis.2015.10
  104. Llona-Minguez, S.; Häggblad, M.; Martens, U.; Throup, A.; Loseva, O.; Jemth, A.S.; Lundgren, B.; Scobie, M.; Helleday, T. Diverse heterocyclic scaffolds as dCTP pyrophosphatase 1 inhibitors. Part 1: Triazoles, triazolopyrimidines, triazinoindoles, quinoline hydrazones and arylpiperazines. Bioorg. Med. Chem. Lett., 2017, 27(16), 3897-3904. doi: 10.1016/j.bmcl.2017.06.038
  105. Timaxian, C.; Vogel, C.F.A.; Orcel, C.; Vetter, D.; Durochat, C.; Chinal, C. NGuyen, P.; Aknin, M.L.; Mercier-Nomé, F.; Davy, M.; Raymond-Letron, I.; Van, T-N-N.; Diermeier, S.D.; Godefroy, A.; Gary-Bobo, M.; Molina, F.; Balabanian, K.; Lazennec, G. Pivotal role for Cxcr2 in regulating tumor-associated neutrophil in breast cancer. Cancers (Basel), 2021, 13(11), 2584. doi: 10.3390/cancers13112584
  106. Cheng, Y.; Mo, F.; Li, Q.; Han, X.; Shi, H.; Chen, S.; Wei, Y.; Wei, X. Targeting CXCR2 inhibits the progression of lung cancer and promotes therapeutic effect of cisplatin. Mol. Cancer, 2021, 20(1), 62. doi: 10.1186/s12943-021-01355-1
  107. Hassan, G.S.; El-Sherbeny, M.A.; El-Ashmawy, M.B.; Bayomi, S.M.; Maarouf, A.R.; Badria, F.A. Synthesis and antitumor testing of certain new fused triazolopyrimidine and triazoloquinazoline derivatives. Arab. J. Chem., 2017, 10, S1345-S1355. doi: 10.1016/j.arabjc.2013.04.002
  108. Haider, K.; Rahaman, S.; Yar, M.S.; Kamal, A. Tubulin inhibitors as novel anticancer agents: an overview on patents (2013-2018). Expert Opin. Ther. Pat., 2019, 29(8), 623-641. doi: 10.1080/13543776.2019.1648433
  109. Tangutur, A.D.; Kumar, D.; Krishna, K.V.; Kantevari, S. Microtubule targeting agents as cancer chemotherapeutics: an overview of molecular hybrids as stabilizing and destabilizing agents. Curr. Top. Med. Chem., 2017, 17(22), 2523-2537. doi: 10.2174/1568026617666170104145640
  110. Shang, H.; Pan, L.; Yang, S.; Chen, H.; Cheng, M. Progress in the study of tubulin inhibitors. Yao Xue Xue Bao, 2010, 45(9), 1078-1088.
  111. Oukoloff, K.; Kovalevich, J.; Cornec, A.S.; Yao, Y.; Owyang, Z.A.; James, M.; Trojanowski, J.Q.; Lee, V.M.Y.; Smith, A.B., III; Brunden, K.R.; Ballatore, C. Design, synthesis and evaluation of photoactivatable derivatives of microtubule (MT)-active 1,2,4triazolo1,5-apyrimidines. Bioorg. Med. Chem. Lett., 2018, 28(12), 2180-2183. doi: 10.1016/j.bmcl.2018.05.010
  112. Oliva, P.; Romagnoli, R.; Cacciari, B.; Manfredini, S.; Padroni, C.; Brancale, A.; Ferla, S.; Hamel, E.; Corallo, D.; Aveic, S.; Milan, N.; Mariotto, E.; Viola, G.; Bortolozzi, R. Synthesis and biological evaluation of highly active 7-Anilino triazolopyrimidines as potent antimicrotubule agents. Pharmaceutics, 2022, 14(6), 1191. doi: 10.3390/pharmaceutics14061191
  113. Huo, X.S.; Jian, X.E.; Ou-Yang, J.; Chen, L.; Yang, F.; Lv, D.X.; You, W.W.; Rao, J.J.; Zhao, P.L. Discovery of highly potent tubulin polymerization inhibitors: Design, synthesis, and structure-activity relationships of novel 2,7-diaryl-1,2,4triazolo1,5-apyrimidines. Eur. J. Med. Chem., 2021, 220, 113449. doi: 10.1016/j.ejmech.2021.113449
  114. Mohamed, H.S.; Amin, N.H.; El-Saadi, M.T.; Abdel-Rahman, H.M. Design, synthesis, biological assessment, and in-silico studies of 1,2,4-triazolo1,5-apyrimidine derivatives as tubulin polymerization inhibitors. Bioorg. Chem., 2022, 121, 105687. doi: 10.1016/j.bioorg.2022.105687
  115. Xu, T.; Wang, Z.; Liu, J.; Wang, G.; Zhou, D.; Du, Y.; Li, X.; Xia, Y.; Gao, Q. Cyclin-dependent kinase inhibitors function as potential immune regulators via inducing pyroptosis in triple negative breast cancer. Front. Oncol., 2022, 12, 820696. doi: 10.3389/fonc.2022.820696
  116. Tadesse, S.; Anshabo, A.T.; Portman, N.; Lim, E.; Tilley, W.; Caldon, C.E.; Wang, S. Targeting CDK2 in cancer: challenges and opportunities for therapy. Drug Discov. Today, 2020, 25(2), 406-413. doi: 10.1016/j.drudis.2019.12.001
  117. Bower, J.; Cansfield, A.; Jordan, A.; Parratt, M.; Walmsley, L.; Williamson, D. Triazolo'1, 5-A! Pyrimidines and their use in medicine. WO Patent 2014108136A1, 2004.
  118. Richardson, C.M.; Williamson, D.S.; Parratt, M.J.; Borgognoni, J.; Cansfield, A.D.; Dokurno, P.; Francis, G.L.; Howes, R.; Moore, J.D.; Murray, J.B.; Robertson, A.; Surgenor, A.E.; Torrance, C.J. Triazolo1,5-apyrimidines as novel CDK2 inhibitors: Protein structure-guided design and SAR. Bioorg. Med. Chem. Lett., 2006, 16(5), 1353-1357. doi: 10.1016/j.bmcl.2005.11.048
  119. Binju, M.; Amaya-Padilla, M.A.; Wan, G.; Gunosewoyo, H.; Suryo Rahmanto, Y.; Yu, Y. Therapeutic inducers of apoptosis in ovarian cancer. Cancers (Basel), 2019, 11(11), 1786. doi: 10.3390/cancers11111786
  120. Chaudhry, G.S.; Md Akim, A.; Sung, Y.Y.; Sifzizul, T.M.T. Cancer and apoptosis: The apoptotic activity of plant and marine natural products and their potential as targeted cancer therapeutics. Front. Pharmacol., 2022, 13, 842376. doi: 10.3389/fphar.2022.842376
  121. Kamal, R.; Kumar, V.; Kumar, R.; Bhardwaj, J.K.; Saraf, P.; Kumari, P.; Bhardwaj, V. Design, synthesis, and screening of triazolopyrimidine-pyrazole hybrids as potent apoptotic inducers. Arch. Pharm. (Weinheim), 2017, 350(11), 1700137. doi: 10.1002/ardp.201700137
  122. Huo, J.L.; Wang, S.; Yuan, X.H.; Yu, B.; Zhao, W.; Liu, H.M. Discovery of 1,2,4triazolo1,5-apyrimidines derivatives as potential anticancer agents. Eur. J. Med. Chem., 2021, 211, 113108. doi: 10.1016/j.ejmech.2020.113108
  123. Kankanala, J.; Ribeiro, C.J.A.; Kiselev, E.; Ravji, A.; Williams, J.; Xie, J.; Aihara, H.; Pommier, Y.; Wang, Z. Novel deazaflavin analogues potently inhibited tyrosyl DNA phosphodiesterase 2 (TDP2) and strongly sensitized cancer cells toward treatment with topoisomerase II (TOP2) poison etoposide. J. Med. Chem., 2019, 62(9), 4669-4682. doi: 10.1021/acs.jmedchem.9b00274
  124. Ribeiro, C.J.A.; Kankanala, J.; Xie, J.; Williams, J.; Aihara, H.; Wang, Z. Triazolopyrimidine and triazolopyridine scaffolds as TDP2 inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(2), 257-261. doi: 10.1016/j.bmcl.2018.11.044
  125. El-Sayed, W. A.; Mohamed, A. M.; Khalaf, H. S.; Al-Manawaty, M. Synthesis, docking studies and anticancer activity of new substituted pyrimidine and triazolopyrimidine glycosides. J. Appl. Pharm. Sci., 2017, 7(09), 001-011.
  126. Cieślak, M.; Komoszyński, M.; Wojtczak, A.; Adenosine, A. Adenosine A2A receptors in Parkinson’s disease treatment. Purinergic Signal., 2008, 4(4), 305-312. doi: 10.1007/s11302-008-9100-8
  127. Rosin, D.L.; Hettinger, B.D.; Lee, A.; Linden, J. Anatomy of adenosine A2A receptors in brain: Morphological substrates for integration of striatal function. Neurology, 2003, 61(11, Supplement 6)(Suppl. 6), S12-S18. doi: 10.1212/01.WNL.0000095205.33940.99
  128. Mori, A.; Chen, J.F.; Uchida, S.; Durlach, C.; King, S.M.; Jenner, P. The pharmacological potential of adenosine A2A receptor antagonists for treating Parkinson’s Disease. Molecules, 2022, 27(7), 2366. doi: 10.3390/molecules27072366
  129. Svenningsson, P.; Le Moine, C.; Fisone, G.; Fredholm, B.B. Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog. Neurobiol., 1999, 59(4), 355-396. doi: 10.1016/S0301-0082(99)00011-8
  130. Vu, C.B.; Shields, P.; Peng, B.; Kumaravel, G.; Jin, X.; Phadke, D.; Wang, J.; Engber, T.; Ayyub, E.; Petter, R.C. Triamino derivatives of triazolotriazine and triazolopyrimidine as adenosine A2a receptor antagonists. Bioorg. Med. Chem. Lett., 2004, 14(19), 4835-4838. doi: 10.1016/j.bmcl.2004.07.048
  131. Tang, M.L.; Wen, Z.H.; Wang, J.H.; Wang, M.L.; Zhang, H.; Liu, X.H.; Jin, L.; Chang, J. Discovery of pyridone-substituted triazolopyrimidine dual A2A/A1 AR antagonists for the treatment of ischemic stroke. ACS Med. Chem. Lett., 2022, 13(3), 436-442. doi: 10.1021/acsmedchemlett.1c00599
  132. Scozzafava, A.; Supuran, C.T. Glaucoma and the applications of carbonic anhydrase inhibitors. Subcell. Biochem., 2014, 75, 349-359. doi: 10.1007/978-94-007-7359-2_17
  133. Wistrand, P.J. Carbonic anhydrase in the anterior urea of the rabbit. Acta Physiol. Scand., 1951, 24(2-3), 144-148. doi: 10.1111/j.1748-1716.1951.tb00833.x
  134. Kinsey, V.E.; Reddy, D.V.N.; Aitken, I.; Carter, R. Turnover of total carbon dioxide in the aqueous humors and the effect thereon of acetazolamide. Arch. Ophthalmol., 1959, 62(1), 78-83. doi: 10.1001/archopht.1959.04220010082009
  135. Marchalant, Y.; Rosi, S.; Wenk, G.L. Anti-inflammatory property of the cannabinoid agonist WIN-55212-2 in a rodent model of chronic brain inflammation. Neuroscience, 2007, 144(4), 1516-1522. doi: 10.1016/j.neuroscience.2006.11.016
  136. Capozzi, A.; Caissutti, D.; Mattei, V.; Gado, F.; Martellucci, S.; Longo, A.; Recalchi, S.; Manganelli, V.; Riitano, G.; Garofalo, T.; Sorice, M.; Manera, C.; Misasi, R. Anti-inflammatory activity of a cb2 selective cannabinoid receptor agonist: Signaling and cytokines release in blood mononuclear cells. Molecules, 2021, 27(1), 64. doi: 10.3390/molecules27010064
  137. Yakovlev, D.S.; Vassiliev, P.M.; Agatsarskaya, Y.V.; Brigadirova, A.A.; Sultanova, K.T.; Skripka, M.O.; Spasov, A.A.; Savateev, K.V.; Rusinov, V.L.; Maltsev, D.V. Searching for novel antagonists of adenosine A1 receptors among azolo1,5-apyrimidine nitro derivatives. Res. Results Pharmacol., 2022, 8(2), 69-75. doi: 10.3897/rrpharmacology.8.77854
  138. Bayazeed, A.A.; Alnoman, R.B. Synthesis of polyheterocyclic ring systems included triazolo1,5-apyrimidine as antioxidant agents. Polycycl. Aromat. Compd., 2022, 42(3), 735-748. doi: 10.1080/10406638.2020.1750042
  139. Wadwale, N.B.; Prasad, D.; Jadhav, A.H.; Karad, A.R.; Khansole, G.S.; Choudhare, S.S.; Navhate, S.V.; Bhosale, V.N. Synthetic development and assessment of antioxidant activity of imino1,2,4triazolo1,5-apyrimidine-6-carbo-nitrile and its derivatives. Russ. J. Org. Chem., 2021, 57(12), 2031-2038. doi: 10.1134/S1070428021120204
  140. Beaulieu, P.L. Filibuvir, a non-nucleoside NS5B polymerase inhibitor for the potential oral treatment of chronic HCV infection. IDrugs, 2010, 13(12), 938-948.
  141. Harder, S.; Thürmann, P.A.; Hellstern, A.; Benjaminov, A. Pharmacokinetics of trapidil, an antagonist of platelet derived growth factor, in healthy subjects and in patients with liver cirrhosis. Br. J. Clin. Pharmacol., 1996, 42(4), 443-449. doi: 10.1111/j.1365-2125.1996.tb00006.x
  142. Minoru, O.; Makoto, S.; Kawamura, Y.; Kasai, S.; Iwasa, A. Sustained-release trapidil tablet. WO Patent 199300781 A1, 1993.
  143. Musumeci, T.; Ventura, C.A.; Giannone, I.; Ruozi, B.; Montenegro, L.; Pignatello, R.; Puglisi, G. PLA/PLGA nanoparticles for sustained release of docetaxel. Int. J. Pharm., 2006, 325(1-2), 172-179. doi: 10.1016/j.ijpharm.2006.06.023
  144. Prado, L.B.; Huber, S.C.; Barnabé, A.; Bassora, F.D.S.; Paixão, D.S.; Duran, N.; Annichino-Bizzacchi, J.M. Characterization of pcl and chitosan nanoparticles as carriers of enoxaparin and its antithrombotic effect in animal models of venous thrombosis. J. Nanotechnol., 2017, 2017, 4925495. doi: 10.1155/2017/4925495
  145. Alex, A.T.; Joseph, A.; Shavi, G.; Rao, J.V.; Udupa, N. Development and evaluation of carboplatin-loaded PCL nanoparticles for intranasal delivery. Drug Deliv., 2016, 23(7), 2144-2153. doi: 10.3109/10717544.2014.948643
  146. Lin, Y.; Wan, Y.; Du, X.; Li, J.; Wei, J.; Li, T.; Li, C.; Liu, Z.; Zhou, M.; Zhong, Z. TAT-modified serum albumin nanoparticles for sustained-release of tetramethylpyrazine and improved targeting to spinal cord injury. J. Nanobiotechnology, 2021, 19(1), 28. doi: 10.1186/s12951-020-00766-4
  147. Larsen, M.T.; Kuhlmann, M.; Hvam, M.L.; Howard, K.A. Albumin-based drug delivery: harnessing nature to cure disease. Mol. Cell. Ther., 2016, 4(1), 3. doi: 10.1186/s40591-016-0048-8
  148. Yu, Z.; Yu, M.; Zhang, Z.; Hong, G.; Xiong, Q. Bovine serum albumin nanoparticles as controlled release carrier for local drug delivery to the inner ear. Nanoscale Res. Lett., 2014, 9(1), 343. doi: 10.1186/1556-276X-9-343
  149. Barbosa, R.D.M.; Ribeiro, L.N.M.; Casadei, B.R.; da Silva, C.M.G.; Queiróz, V.A.; Duran, N.; de Araújo, D.R.; Severino, P.; de Paula, E. Solid lipid nanoparticles for dibucaine sustained release. Pharmaceutics, 2018, 10(4), 231.
  150. Mu, H.; Wang, Y.; Chu, Y.; Jiang, Y.; Hua, H.; Chu, L.; Wang, K.; Wang, A.; Liu, W.; Li, Y.; Fu, F.; Sun, K. Multivesicular liposomes for sustained release of bevacizumab in treating laser-induced choroidal neovascularization. Drug Deliv., 2018, 25(1), 1372-1383. doi: 10.1080/10717544.2018.1474967
  151. Kalepu, S.; Manthina, M.; Padavala, V. Oral lipid-based drug delivery systems – an overview. Acta Pharm. Sin. B, 2013, 3(6), 361-372. doi: 10.1016/j.apsb.2013.10.001
  152. Luo, Y.; Wang, Q. Zein-based micro- and nano-particles for drug and nutrient delivery: A review. J. Appl. Polym. Sci., 2014, 131(16), 40696. doi: 10.1002/app.40696
  153. Gong, S.J.; Sun, S.X.; Sun, Q.S.; Wang, J.Y.; Liu, X.M.; Liu, G.Y. Tablets based on compressed zein microspheres for sustained oral administration: design, pharmacokinetics, and clinical study. J. Biomater. Appl., 2011, 26(2), 195-208. doi: 10.1177/0885328210363504
  154. Elsadek, N.E.; Nagah, A.; Ibrahim, T.M.; Chopra, H.; Ghonaim, G.A.; Emam, S.E.; Cavalu, S.; Attia, M.S. Electrospun nanofibers revisited: An update on the emerging applications in nanomedicine. Materials (Basel), 2022, 15(5), 1934. doi: 10.3390/ma15051934
  155. Laha, A.; Gaydhane, M.K.; Sharma, C.S.; Majumdar, S. Compressed nanofibrous oral tablets: An ingenious way for controlled release kinetics of Amphotericin-B loaded gelatin nanofibers. Nano-Struct. Nano-Objects, 2019, 19, 100367. doi: 10.1016/j.nanoso.2019.100367

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers