Application of X-ray microtomography techniques to detect early diagenetic changes in foraminifera shells

Cover Page

Cite item

Full Text

Abstract

The structure of benthic foraminifera shells was studied by X-ray microtomography as a clarifying step in the study of secondary authigenic carbonate formation on foraminifera shells at methane vent sites. Without destroying the specimens, images of the outer surface and sections of benthic foraminifera shells were obtained, and the percentages of shell volumes, solid inclusions, and voids within the shells of the specimens were calculated. Shells of the species Nonionellina labradorica, sampled from sediment horizons corresponding to intense and prolonged methane events, compared to shells of the same species from horizons without methane events, show a 26.9% increase in the mean shell fraction, a nearly twofold increase in the mean solid inclusion fraction, and a 10.4% decrease in the mean shell void fraction. For shells of the species Uvigerina parvocostata, a similar comparison showed the following results: an increase in the mean value of the shell fraction by 6.5%, a 4-fold decrease in the mean value of the fraction of solid inclusions, and a 6.3% decrease in the mean value of the void fraction.

Full Text

Restricted Access

About the authors

Leonid O. Utyupin

Far East Geological Institute, FEB RAS

Author for correspondence.
Email: leonid.9@mail.ru
ORCID iD: 0009-0006-3483-8815

Engineer

Russian Federation, Vladivostok

Maria A. Ushkova

Far East Geological Institute, FEB RAS

Email: m_ushkova@list.ru
ORCID iD: 0009-0001-3981-7099

Leading Engineer

Russian Federation, Vladivostok

Alexandra V. Romanova

Far East Geological Institute, FEB RAS

Email: sandra_ru@bk.ru
ORCID iD: 0000-0003-2884-1197

Candidate of Sciences in Geology and Mineralogy, Senior Researcher

Russian Federation, Vladivostok

Sergey P. Pletnev

V.I. Il’yichev Pacific Oceanological Institute, FEB RAS

Email: pletnev@poi.dvo.ru
ORCID iD: 0000-0001-9516-7089

Doctor of Sciences in Geology and Mineralogy, Leading Researcher

Russian Federation, Vladivostok

Anna V. Poselyuzhnaya

Far East Geological Institute, FEB RAS

Email: anna_ivv@mail.ru
ORCID iD: 0009-0004-0368-8856

Senior Engineer

Russian Federation, Vladivostok

References

  1. Zonenshain L. P., Murdmaa I. O., Baranov B. V., Kuznetsov A. P., Kuzin V. S., Kuz’min M.I., Avdeiko G. P., Stunzhas P. A., Lukashin V. N., Barash M. S., Valyashko G. M., Demina L. L. Podvodnyi gazovyi istochnik v Okhotskom more k zapadu ot ostrova Paramushir = [Underwater gas source in the Sea of Okhotsk west of Paramushir Island]. Oceanology. 1987;5:795–800. (In Russ.).
  2. Solov’ev V.A., Ginsburg G. D., Duglas V. K., Krenston R., Lorenson T., Alekseev I. A., Baranova N. S., Ivanova G. A., Kazazaev V. P., Lobkov V. A., Mashirov Yu.G., Natorkhin M. I., Obzhirov A. I., Titaev B. F. Gazovye gidraty Okhotskogo morya = [Gas hydrates of the Sea of Okhotsk]. Otechestvennaya Geologiya. 1994;(2):190–197. (In Russ.).
  3. Obzhirov A. I. Gazokhimicheskie polya i prognoz neftegazonosnosti morskikh akvatorii = [Gas-chemical fields and prediction of oil and gas content in offshore areas]: specialty 04.00.13: abstract of the dissertation for the degree of Doctor of Sciences in Geology and Mineralogy. Moscow; 1995. 38 p. (In Russ.).
  4. Hill T. M., Stott L., Valentine D. L. Isotopic evidence for the incorporation of methane-derived carbon into foraminifera from modern methane seeps, Hydrate Ridge, Northeast Pacific // Geochim. Cosmochim. Acta. 2004;68:4619–4627.
  5. Levin L. A. Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes. Oceanogr. Mar. Biol. Ann. Rev. 2005;43:1–46.
  6. Pletnev S. P., Annin V. K., Vu Yu., Tarasova T. S. Foraminifery i izotopiya (16O/18O i 12C/13C) ikh rakovin v mestakh vykhoda metana na vostochnom sklone o. Sakhalin (Okhotskoe more) = [Foraminifera and isotopy (16O/18O and 12C/13C) of their shells at methane vent sites on the eastern slope of Sakhalin Island (Sea of Okhotsk). Sakhalin Island (Sea of Okhotsk)]. Izvestiya TINRO. 2014;178:180–190. (In Russ.).
  7. Torres M. E., Mix A. C., Kinports K., Haley B., Klinkhammer G. P., McManus J., de Angelis M. A. Is methane venting at the seafloor recorded by δ13C of benthic foraminifera shells? Paleoceanography. 2003;18(3):1062–1074.
  8. Uchida M., Ohkushi K., Kimoto K., Inagaki F., Ishimura T., Tsunogai U., Tuzino T., Shibata Y. Radiocarbon-based carbon source quantification of anomalous isotopic foraminifera in last glacial sediments in the western North Pacific. Geochem. Geophys. Geosyst. 2008;9(4). doi: 10.1029/2006GC001558.
  9. Sen Gupta B. K., Platon E., Bernhard J. M., Aharon P. Foraminiferal colonization of hydrocarbon-seep bacterial mats and underlying sediment, Gulf of Mexico slope. J. Foram. Res. 1997;27(4):292–300.
  10. Panieri G., Camerlenghi A., Conti S., Pini G. A., Cacho I. Methane seepages recorded in benthic foraminifera from Miocene seep carbonates, Northern Apennines (Italy). Palaeogeography. Palaeoclimatology. Palaeoecology. 2009;284:271–282.
  11. Kennett J., Cannariato K., Hendy I., Behl R. Carbon isotopic evidence for methane hydrate instability during Quaternary interstadials. Science. 2000;288:128–133.
  12. Rathburn A. E., Levin L., Held Z., Lohmann K. C. Benthic foraminifera associated with cold methane seeps on the northern California margin: Ecology and stable isotopic composition. Mar. Micropaleontol. 2000;38:247–266.
  13. Rathburn A. E., Perez M. E., Martin J. B., Day S. A., Mahn C., Gieskes J., Ziebis W., Williams D., Bahls A. Relationship between the distribution and stable isotopic composition of living benthic foraminifera and cold methane seep biogeochemistry in Monterey Bay, California. Geochem. Geophys. Geosyst. 2003;4. 1106. doi: 10.1029/2003GC000595.
  14. Lein A.Yu. Autigennoe karbonatoobrazovanie v okeane = [Authigenic carbonate formation in the ocean]. Lithology and Mineral Resources. 2004;(1):3–35. (In Russ.).
  15. Panieri G., Aharon P., Sen Gupta B. K., Camerlenghi A., Ferrer F. P., Cacho I. Late Holocene foraminifera of Blake Ridge Diapir: Assemblage variation and stable-isotope record in gas-hydrate bearing sediments. Mar. Geol. 2014;353:99–107.
  16. Logvina E. A., Krylov A. A., Matveeva T. V., Maksimov F. E., Kuznetsov V.Yu. Autigenez karbonatov v otlozheniyakh gazogidratonosnoi struktury KHAOS (Okhotskoe more) = [Authigenesis of carbonates in the deposits of the gas-hydrate-bearing structure of the CHAOS (sea of Okhotsk)]. Vestnik of Saint Petersburg University. Earth Sciences. 2022;67(1):50–73. (In Russ.). doi: 10.21638/spbu07.2022.103.
  17. Panieri G., Graves C., James R. Paleo-methane emissions recorded in foraminifera near the landward limit of the gas hydrate stability zone offshore western Svalbard. Geochem. Geophys. Geosyst. 2016;17(2):521–537. doi: 10.1002/2015GC006153.
  18. Lucas D. Mouro, Lucas D. Vieira, Anderson C. Moreira, Enelise Katia Piovesan, Celso P. Fernandes, Gerson Fauth, Rodrigo S. Horodisky, Renato Pirani Ghilardi, Iara F. Mantovani, Simone Baecker-Fauth, Guilherme Krahl, Breno Leit˜ao Waichel, Mateus Souza da Silva. Testing the X-ray computed microtomography on microfossil identification: An example from Sergipe-Alagoas Basin, Brazil. Journal of South American Earth Sciences. 2021. https://doi.org/10.1016/j.jsames.2020.103074
  19. Michael Siccha, Raphaël Morard, Julie Meilland, Shinya Iwasaki, Michal Kucera, Katsunori Kimoto. Collection of X-ray micro computed tomography images of shells of planktic foraminifera with curated taxonomy. Scientific Data. 2023;10:679. https://doi.org/10.1038/s41597-023-02498-0
  20. Iwasaki S., Kimoto K., Okazaki Y., Ikehara M. X‐ray micro‐CT scanning of tests of three planktic foraminiferal species to clarify dissolution process and progress. Geochemistry, Geophysics, Geosystems. 2019;20:6051–6065. https://doi.org/10.1029/2019GC008456
  21. Romanova A. V., Utyupin L. O., Pletnev S. P., Poselyuzhnaya A. V. Vtorichnaya karbonatnaya mineralizatsiya rakovin foraminifer v usloviyakh golotsenovykh paleoehmissii metana v Okhotskom more = [Secondary carbonate mineralization of foraminifera shells under Holocene methane paleoemissions in the Sea of Okhotsk]. In: Proceedings of the VI All-Russian Conference with International Participation Geological Processes in Subduction, Collision and Sliding of Lithospheric Plates. Vladivostok: Far East Federal University; 2023. P. 173–176. (In Russ.). https://doi.org/10.24866/7444-5547-7
  22. Pletnev S. P., Yonghua Wu, Romanova A. V., Annin V. K., Utkin I. V., Vereshchagina O. F. Negativnye ehkskursy δ13C rakovin bentosnykh foraminifer: golotsenovaya istoriya metanovykh sobytii v tsentral’noi chasti Okhotskogo morya = [Negative δ13C excursions in foraminiferal records: the holocene history of methane events in the central sea of okhotsk]. Geology and Geophysics. 2020;6(4):527–545. (In Russ.).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Tests of benthic foraminifers U. parvocostata (left) and N. labradorica (right) collected from the 20–25 cm sediment horizon. All scale bars are 100 µm. From top to bottom: 1 – light microscope image, 2 – volume microtomographic image, 3 – microtomographic image in translucency mode, 4 – microtomographic cross-section of the shell

Download (112KB)
3. Fig. 2. Tests of benthic foraminifers U. parvocostata (left) and N. labradorica (right) collected from the 470–475 cm sediment horizon. All scale bars are 100 µm. From top to bottom: 1 – image in a light microscope, 2 – volume microtomographic image, 3 – microtomographic image in translucency mode, 4 – microtomographic cross-section of a shell

Download (119KB)
4. Fig. 3. Graph of distribution of values of the proportions of shell, voids and solid inclusions in shell samples: 1 – proportion of voids in a shell, %; 2 – proportion of solid inclusions in a shell, %; 3 – proportion of a shell, %

Download (53KB)

Copyright (c) 2024 Russian Academy of Sciences