Structural chemistry of mixed-ligand inorganic fluoride complexes of uranyl (review)
- Authors: Davidovich R.L.1
-
Affiliations:
- Institute of Chemistry, FEB RAS
- Issue: No 1 (2024)
- Pages: 92-112
- Section: Chemical Sciences. Synthesis, structure and properties of complex compounds
- URL: https://archivog.com/0869-7698/article/view/676040
- DOI: https://doi.org/10.31857/S0869769824010072
- EDN: https://elibrary.ru/lejudv
- ID: 676040
Cite item
Full Text
Abstract
The crystal structures of mixed-ligand sulfato-, selenato-, phosphato-, arsenato-, and chromato-fluoride complexes of uranyl studied by the single-crystal X-ray diffraction method have been systematized and discussed. The crystal chemical features of the structures of the mixed-ligand inorganic fluoride complexes of uranyl were determined: the coordination polyhedron of the hexavalent uranium atom in the structures of the mixed-ligand inorganic fluoride complexes of uranyl has a pentagonal-bipyramidal structure: the oxygen atoms of the uranyl group are located on the vertical axis of the pentagonal bipyramid, perpendicular to the equatorial plane in which five atoms are located. In the crystal structures of dimeric and polymeric chain mixed-ligand inorganic fluoride complexes of uranyl the fluoride bridges form fluoride atoms. Inorganic ligands combine dimers and polymeric chains into layers and three-dimensional formation.
Full Text

About the authors
Ruven L. Davidovich
Institute of Chemistry, FEB RAS
Author for correspondence.
Email: davidovich@ich.dvo.ru
ORCID iD: 0000-0002-8473-3580
Doctor of Sciences in Chemistry, Professor, Chief Researcher
Russian Federation, VladivostokReferences
- Davidovich R. L., R.L., Goreshnik E. A. Structural chemistry of fluoride complexes of uranyl. Structural Chemistry. 2023;34(1):265–284. http://doi.org/10.1007/s11224-022-02095-8.
- Alcock N. W., Roberts M. M., Chakravorti M. C. Structure of Potassium catena-Di-μ-fluoro-difluorotetraoxo-di-μ-sulphato-diuranate(VI) Hydrate. Acta Crystallographica. 1980; B36:687–690. https://doi.org/10.1107/S0567740880004141.
- Mikhailov Yu.N., Gorbunova Yu.E., Mit’kovskaya E.V., Serezhkina L. B., Serezhrin V. N. Kristallicheskaya struktura Rb[UO2(SO4)F] = [Crystal structure Rb[UO2(SO4)F]. Radiochemistry. 2002; 44:290–292. (In Russ.). https://doi.org/10.1023/A:1020652306275.
- Serezhkin V. N., Soldatkina M. A. Kristallicheskaya struktura NH4[UO2(SO4)F] = [The crystal structure NH4[UO2(SO4)F]]. Koordinacionnaya khimiya. 1985;11(1):103–105. (In Russ.).
- Doran M. B., Cockbain B. E., Norquist A. J., O’Hare D. The effects of hydrofluoric acid addition on the hydrothermal synthesis of templated uranium sulfates. Dalton Transactions. 2004; 22:3810–3814. https://doi.org/10.1039/B413062F.
- Doran M. B., Cockbain B. E., O’Hare D. Structural variation in organically templated uranium sulfate fluorides. Dalton Transactions. 2005; 10:1774–1780. https://doi.org/10.1039/B504457J.
- Serezhkina L. B., Vologzhanina A. V., Verevkin A. G., Serezhkin V. N. Rentgenograficheskoe issledovanie Rb[UO2(SeO4)F]·H2O = [An X-ray diffraction study of Rb[UO2(SeO4)F]·H2O]. Radiokhimiya. 2011; 53:301–301. (In Russ.).
- Blatov V. A., Serezhkina L. B., Serezhkin V. N., Trunov V. K. Kristallicheskaya struktura NH4[UO2(SeO4)F]·H2O = [The crystal structure NH4[UO2(SeO4)F]·H2O]. Zhurnal neorganicheskoi khimii. 1989; 34:162–164. (In Russ.).
- Ok K. M., Baek J., Halasyamani P. S., O’Hare D. New layered uranium phosphate fluorides: Syntheses, structures, characterizations, and ion-exchange properties of A(UO2)F(HPO4)·xH2O (A = Cs+, Rb+, K+; x = 0–1). Inorganic Chemistry. 2005; 45:10207–10214. https://doi.org/10.1021/ic061420d.
- Ling J., Wu S., Chen F., Simonetti A., Shafer J. T., Albrecht-Schmitt T. E. Does Iodate Incorporate into Layered Uranyl Phosphates Under Hydrothermal Conditions? Inorganic Chemistry. 2009; 48:10995–11001. doi: 10.1021/ic9011247.
- Nelson A.-G.D., Alekseev E. V., Ewing R. C., Albrecht-SchmittT.E. Barium uranyl diphosphonates. Journal Solid State Chemistry. 2012; 192:153–160. https://doi.org/10.1016/j.jssc.2012.04.002.
- Ok K. M., Doran M. B., O’Hare D. [(CH3)2NH(CH2)2NH(CH3)2][(UO2)2F2(HPO4)2]: a new organically templated layered uranium phosphate fluoride – synthesis, structure, characterization, and ion-exchange reaction. Dalton Transactions. 2007:3325–3329. doi: 10.1039/b705759h.
- Mandal S., Chandra M., Natarajan S. Synthesis, structure, and upconversion studies on organically templated uranium phosphites. Inorganic Chemistry. 2007; 46:7935–7943. doi: 10.1021/ic700866f.
- Doran M. B., Norquist A. J., O’Hare D. Reactant-mediated diversity in uranyl phosphonates. Chemistry of Materials. 2003; 15:1449–1455. https://doi.org/10.1021/cm021711u.
- Adelani P. O., Albrecht-Schmitt T. E. Pillared and open-framework uranyl diphosphonates. Journal Solid State Chemistry. 2011; 184:2368–2373. https://doi.org/10.1016/j.jssc.2011.06.039.
- Adelani P. O., Martinez N. A., Cook N. D., Burns P. C. Uranyl-organic hybrids designed from hydroxyphosphonate. European Journal Inorganic Chemistry. 2015;2015(2):340–347. doi: 10.1002/ejic.201402764.
- Monteiro B., Fernandes J. A., Pereira C. C.L., Vilela S. M.F., Tomé J. P.C., Marçalo J., Almeida Paz F. A. Metal-organic frameworks based on uranyl and phosphonate ligands. Acta Crystallographica. 2014; B70:28–36. doi: 10.1107/S2052520613034781.
- Zheng T., Gao Y., Chen L., Liu Z., Diwu J., Chai Z., Albrecht-Schmitt T.E., Wang S. A new chiral uranyl phosphonate framework consisting of achiral building units generated from ionothermal reaction: structure and spectroscopy characterizations. Dalton Transactions. 2015:18158–18166. doi: 10.1039/c5dt02667a.
- Rao V. K., Bharathi K., Prabhu K., Chandra M., Natarajan S. Two- and three-dimensional open-framework uranium arsenates: Synthesis, structure, and characterization. Inorganic Chemistry. 2010; 49:2931– 2947. https://doi.org/10.1021/ic902472h.
- Serezhkin V. N., Peresypkina E. V., Novikov S. A., Virovets A. V., Serezhkina L. B. New fluorochromatouranylates of alkali metals: Synthesis and structure. Russian Journal Inorganic Chemistry. 2014; 59:788–797. https://doi.org/10.1134/S003602361408018X.
Supplementary files
